Ecliptic coordinate system: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
en>Rainer Wasserfuhr
m Primary direction: fixed typo
en>SteveMcCluskey
Historical usage: reorganize
Line 1: Line 1:
{{continuum mechanics|cTopic=[[Fluid mechanics]]}}
== Potrebbe sembrare un progetto difficile Abercrombie Online ==
In [[physics]], the '''Navier–Stokes equations''' [{{IPA|navˈjeː stəʊks}}], named after [[Claude-Louis Navier]] and [[Sir George Stokes, 1st Baronet|George Gabriel Stokes]], describe the motion of [[fluid]] substances. These equations arise from applying [[Newton's second law]] to [[Fluid dynamics|fluid motion]], together with the assumption that the [[stress (mechanics)|stress]] in the fluid is the sum of a [[diffusion|diffusing]] [[viscosity|viscous]] term (proportional to the [[gradient]] of velocity) and a [[pressure]] term - hence describing ''viscous flow''.


The equations are useful because they describe the physics of many things of academic and economic interest. They may be used to [[model (abstract)|model]] the [[weather]], [[ocean current]]s, water [[flow conditioning|flow in a pipe]] and air flow around a [[airfoil|wing]]. The Navier–Stokes equations in their full and simplified forms help with the design of aircraft and cars, the study of blood flow, the design of power stations, the analysis of pollution, and many other things. Coupled with [[Maxwell's equations]] they can be used to model and study [[magnetohydrodynamics]].
Può essere molto comune al momento di ottenere un latte intero di grasso in eccesso, il vostro viaggio di lavoro. Non esaminare se stessi all'interno della partita. Rendere i capelli dalla faccia in modo che si può aiutare la prevenzione di olio essenziale di sviluppo fino alla vostra pelle del viso. <br><br>Cercate di trattare il vostro sistema con l'aggiunta di cura adeguata e non esercitare se stessi. " onmouseover="this.style.backgroundColor='#ebeff9'" onmouseout="this.style.backgroundColor='#fff'">Utilizzando un'altra cosa potrebbe riposto la vostra salute generale a rischio.. <br><br>Questa erba naturale ha sia antibatterica e qualità anti-fungini. Per ottenere un cane contento, è importante iniziare socializzare fin dalla tenera invecchiano. Per risparmiare denaro sulla polizza di assicurazione del proprietario di abitazione pensare le spese di progetti di costruzione, prima di iniziare a sviluppare. <br><br>Potrebbe sembrare un progetto difficile, ma se si possiedono le conoscenze necessarie per eseguire il backup scelte, può rendere più semplice. Se si scopre che si potrebbe avere problemi a spendere troppi soldi, provare a utilizzare denaro ogni volta che andate d'acquisto. <br><br>Accertarsi [http://www.grupxativa.com/beta/_old/noticias/simple.php Abercrombie Online] che non avete dolci sdraiati intorno alla posizione della vostra casa. Esso può essere appagante a prendere questo generare con altre persone, o forse si vuole accettare di auto da soli. Questi elementi contengono acidi e quindi sono più difficili per il vostro corpo di assorbire. <br><br>Prestare attenzione ai cibi che sono l'ideale per voi quando si combatte i sintomi despression. " onmouseover="this.style.backgroundColor='#ebeff9'" onmouseout="this.style.backgroundColor='#fff'">Questo può diffondere la luce, generando per il dolce, l'illuminazione naturale nelle fotografie.. <br><br>Prendere attentamente in considerazione [http://www.teatroateatro.com/Static/Scripts/accordion/base.php Nike Factory Store] individui carte di credito che forniscono un interesse pari a zero per cento. Avere un cucciolo propriamente educati è un buon piacere che può [http://www.euroclinicimport.com/images/access.asp Nike Free Baratas] solo essere raggiunto per mezzo di una corretta coaching. Essere bene con [http://www.maccsoft.com/themes/dark/content.asp Polo Fred Perry] pavimento in centro, a volte e tenere a mente, se il tuo datore di lavoro è soddisfatto con il lavoro ma si sta comunque doversi preoccupare di questo, è più probabile impostando i tuoi criteri eccessivo. <br><br>Esso fornisce un sacco di tattiche e merci che richiedono una visione entusiasta, precisioni nonché un'attenzione tagliente di profondità. " onmouseover="this.style.backgroundColor='#ebeff9'" onmouseout="this.style.backgroundColor='#fff'">Smettere di fumare può ricaricare tutto il tuo corpo e migliorare la vostra visione totale dell'esistenza..<ul>
 
  <li>[http://www.vitrinaweb.es/index.php?page=item&id=101855 http://www.vitrinaweb.es/index.php?page=item&id=101855]</li>
 
  <li>[http://www.hgba.cn/forum.php?mod=viewthread&tid=289065 http://www.hgba.cn/forum.php?mod=viewthread&tid=289065]</li>
 
  <li>[http://www.vitrinaweb.es/index.php?page=item&id=101954 http://www.vitrinaweb.es/index.php?page=item&id=101954]</li>
 
  <li>[http://openuptome.org/activity/p/53667/ http://openuptome.org/activity/p/53667/]</li>
 
</ul>


The Navier–Stokes equations are also of great interest in a purely mathematical sense. Somewhat surprisingly, given their wide range of practical uses, mathematicians have not yet proven that, in three dimensions, solutions always exist ([[Existence theorem|existence]]), or that if they do exist, then they do not contain any [[Mathematical singularity|singularity]] (smoothness). These are called the [[Navier–Stokes existence and smoothness]] problems. The [[Clay Mathematics Institute]] has called this one of the [[Millennium Prize Problems|seven most important open problems in mathematics]] and has offered a US$1,000,000 prize for a solution or a counter-example.<ref>
== Per aiutare a controllare il nervosismo Nike Cortez ==
{{Citation
| url = http://www.claymath.org/millennium-problems
| title = Millennium Prize Problems
| publisher = Clay Mathematics Institute
| accessdate = 2014-01-14
}}</ref>


==Velocity field==
Devi essere inalare il più pulito flusso d'aria probabile, per tutto il tempo.. Speriamo che troverete i seguenti consigli vantaggiosa. " onmouseover="this.style.backgroundColor='#ebeff9'" onmouseout="this.style.backgroundColor='#fff'">Le informazioni e suggerimenti in questo articolo vi aiuterà a utilizzare e-mail marketing per portare nuova vita quotidiana alla società.. <br><br>Per aiutare a controllare il nervosismo, la ricerca per gli articoli o le persone che a farti ridere di più. Uno dei migliori temi che si possono fare in modo che è possibile ridurre la probabilità di incontrare acne è quello di mangiare cibi che viene caricato con zinco. <br><br>Richiedi dettagli accreditamento. Debito può palla di neve a te, ma nessuno vi porterà in un buco economico su prestiti online payday. Non è una grande idea per analizzare con il vostro dormitorio. Quando si utilizzano piante o abbondante soggetto normale materia al di fuori, tentare di prendere in considerazione le tue foto su un giorno nuvoloso. <br><br>Sfruttate al massimo usando il messaggio di testo, o sms, per collegare insieme con i vostri clienti utilizzano i telefoni cellulari. Se si sceglie di usare pesticidi per rimuovere insetti, assicuratevi di scegliere un pesticida modificato per lo scenario. <br><br>Pagare per il più basso su altre carte di credito, se questo indica che si è in grado di pagare questi debiti via più rapida. Un suggerimento utile in relazione al golf sta per essere tranquillo quando gli altri giocatori stanno colpendo la palla da tennis. <br><br>Che vi aiuterà a smettere di russare si dovrebbe considerare cadere qualche peso. Questo probabilmente controllare il vostro dolore sia in grado di ridurre i dolori e dolori quando vivace. Scopri cosa pasti che non dovrebbe [http://www.blauhouse.net/Templates/modular/Templates/filter.asp Nike Cortez] essere avere, e regolare la vostra dieta quotidiana di conseguenza. <br><br>Queste piastrine dei livelli di colesterolo può a poco a poco aumento e infine bloccare i passaggi. Inalatori insulina dovrebbero essere disponibili a breve. Il vostro avvocato o procuratore sta lavorando non solo sul tuo caso. Apnea ostruttiva del sonno spesso può essere causato [http://www.transportesdearte.com/news/client.asp Vibram España] da russare rumorosamente. <br><br>È possibile esaminare con questo utilizzando i robot che sono in giro. Un sacco di vostre piantine deve essere [http://www.tutatis.es/fotos/thumbs/banner.asp Nike Tacon España] tracciato nuovamente in un contenitore più grande prima di decidere di metterli nel vostro cortile. A volte le strategie classiche ed economiche per la gestione di porte d'ingresso cigolante [http://www.grupxativa.com/beta/_old/includes/serach.php Hollister Tiendas] può essere giusto per voi. <br><br>Dopo aver letto questo articolo, è necessario avere idee nuove e benefiche su come gestire e conquistare i sintomi di allergia. Sono le vostre frasi termine di ricerca alloggiare nei titoli di link spiegate. Stai andando avere bisogno di effettuare un deposito su di essa e portare un pagamento al mese come si farebbe con una normale carta di credito.<ul>
The Navier–Stokes equations dictate not [[position (vector)|position]] but rather [[velocity]]. A solution of the Navier–Stokes equations is called a [[velocity field]] or flow field, which is a description of the velocity of the fluid at a given point in space and time. Once the velocity field is solved for, other quantities of interest (such as flow rate or drag force) may be found. This is different from what one normally sees in [[classical mechanics]], where solutions are typically trajectories of position of a [[wiktionary:Particle|particle]] or deflection of a [[Continuum (theory)|continuum]]. Studying velocity instead of position makes more sense for a fluid; however for visualization purposes one can compute various [[Streamlines, streaklines, and pathlines|trajectories]].
    
 
  <li>[http://www.jinxi.gd.cn/news/html/?44379.html http://www.jinxi.gd.cn/news/html/?44379.html]</li>
==Properties==
 
 
  <li>[http://classifieds.mpsoftechnology.com/index.php?page=item&id=449800 http://classifieds.mpsoftechnology.com/index.php?page=item&id=449800]</li>
===Nonlinearity===
    
 
  <li>[http://45.gxhc360.com/forum.php?mod=viewthread&tid=359385 http://45.gxhc360.com/forum.php?mod=viewthread&tid=359385]</li>
The Navier–Stokes equations are [[nonlinear]] [[partial differential equations]] in almost every real situation.<ref>Fluid Mechanics (Schaum’s Series), M. Potter, D.C. Wiggert, Schaum’s Outlines, McGraw-Hill (USA), 2008, ISBN 978-0-07-148781-8</ref><ref>Vectors, Tensors, and the basic Equations of Fluid Mechanics, R. Aris, Dover Publications, 1989, ISBN(10) 0-486-66110-5</ref> In some cases, such as one-dimensional flow and [[Stokes flow]] (or creeping flow), the equations can be simplified to linear equations. The nonlinearity makes most problems difficult or impossible to solve and is the main contributor to the [[turbulence]] that the equations model.
 
 
  <li>[http://mexster.com/elgg/pg/bookmarks/add/hmcoewxju http://mexster.com/elgg/pg/bookmarks/add/hmcoewxju]</li>
The nonlinearity is due to [[convective]] acceleration, which is an acceleration associated with the change in velocity over position. Hence, any convective flow, whether turbulent or not, will involve nonlinearity. An example of convective but [[laminar flow|laminar]] (nonturbulent) flow would be the passage of a viscous fluid (for example, oil) through a small converging [[nozzle]]. Such flows, whether exactly solvable or not, can often be thoroughly studied and understood.<ref>McGraw Hill Encyclopaedia of Physics (2nd Edition), C.B. Parker, 1994, ISBN 0-07-051400-3</ref>
 
 
</ul>
===Turbulence===
 
[[Turbulence]] is the time-dependent [[Chaos theory|chaotic]] behavior seen in many fluid flows. It is generally believed that it is due to the [[inertia]] of the fluid as a whole: the culmination of time dependent and convective acceleration; hence flows where inertial effects are small tend to be laminar (the [[Reynolds number]] quantifies how much the flow is affected by inertia). It is believed, though not known with certainty, that the Navier–Stokes equations describe turbulence properly.<ref>Encyclopaedia of Physics (2nd Edition), R.G. Lerner, G.L. Trigg, VHC publishers, 1991, ISBN (Verlagsgesellschaft) 3-527-26954-1, ISBN (VHC Inc.) 0-89573-752-3</ref>
 
The numerical solution of the Navier–Stokes equations for turbulent flow is extremely difficult, and due to the significantly different mixing-length scales that are involved in turbulent flow, the stable solution of this requires such a fine mesh resolution that the computational time becomes significantly infeasible for calculation (see [[Direct numerical simulation]]). Attempts to solve turbulent flow using a laminar solver typically result in a time-unsteady solution, which fails to converge appropriately. To counter this, time-averaged equations such as the [[Reynolds-averaged Navier–Stokes equations]] (RANS), supplemented with turbulence models, are used in practical [[computational fluid dynamics]] (CFD) applications when modeling turbulent flows. Some models include the [[Spalart–Allmaras turbulence model|Spalart-Allmaras]], [[k-omega turbulence model|k-ω]] (k-omega), [[turbulence kinetic energy|k-ε]] (k-epsilon), and SST models which add a variety of additional equations to bring closure to the RANS equations. Another technique for solving numerically the Navier–Stokes equation is the [[Large eddy simulation]] (LES). This approach is computationally more expensive than the RANS method (in time and computer memory), but produces better results since the larger turbulent scales are explicitly resolved.
 
===Applicability===
 
Together with supplemental equations (for example, conservation of mass) and well formulated boundary conditions, the Navier–Stokes equations seem to model fluid motion accurately; even turbulent flows seem (on average) to agree with real world observations.
 
The Navier–Stokes equations assume that the fluid being studied is a [[Continuum mechanics|continuum]] (it is infinitely divisible and not composed of particles such as atoms or molecules), and is not moving at [[Special relativity#Relativistic mechanics|relativistic velocities]]. At very small scales or under extreme conditions, real fluids made out of discrete molecules will produce results different from the continuous fluids modeled by the Navier–Stokes equations. Depending on the [[Knudsen number]] of the problem, [[statistical mechanics]] or possibly even [[molecular dynamics]] may be a more appropriate approach.
 
Another limitation is simply the complicated nature of the equations. Time tested formulations exist for common fluid families, but the application of the Navier–Stokes equations to less common families tends to result in very complicated formulations which are an area of current research. For this reason, these equations are usually written for [[Newtonian fluid]]s. Studying such fluids is "simple" because the viscosity model ends up being [[linear]]; truly general models for the flow of other kinds of fluids (such as blood) do not, as of 2012, exist {{citation needed|date=December 2013}}.
 
==Derivation and description==
 
{{Main|Derivation of the Navier–Stokes equations}}
 
The derivation of the Navier–Stokes equations begins with an application of [[Newton's second law]]: conservation of momentum (often alongside mass and energy conservation) being written for an arbitrary portion of the fluid. In an [[inertial frame of reference]], the general form of the equations of fluid motion is:<ref>Batchelor (1967) pp. 137 & 142.</ref>
 
{{Equation box 1
|indent=:
|title='''Navier–Stokes equations''' ''(general)''
|equation=<math> \rho \left(\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v} \right) = -\nabla p + \nabla \cdot\boldsymbol{\mathsf{T}} + \mathbf{f}</math>
|cellpadding
|border
|border colour = #50C878
|background colour = #ECFCF4
}}
 
where '''v''' is the flow velocity, ρ is the fluid density, ''p'' is the pressure, <math>\boldsymbol{\mathsf{T}}</math> is the ([[Cauchy stress tensor#Stress deviator tensor|deviatoric]]) component of the [[Cauchy stress tensor|total stress tensor]], which has the order two, and '''f''' represents [[body force]]s (per unit volume) acting on the fluid and ∇ is the [[del]] operator. This is a statement of the conservation of momentum in a fluid and it is an application of Newton's second law to a [[Continuum mechanics|continuum]]; in fact this equation is applicable to any non-relativistic continuum and is known as the [[Cauchy momentum equation]].
 
This equation is often written using the [[material derivative]] ''D'''''v'''/''Dt'', making it more apparent that this is a statement of [[Newton's second law]]:
 
:<math>\rho \frac{D \mathbf{v}}{D t} = -\nabla p + \nabla \cdot\boldsymbol{\mathsf{T}} + \mathbf{f}.</math>
 
The left side of the equation describes acceleration, and may be composed of time dependent or convective effects (also the effects of non-inertial coordinates if present). The right side of the equation is in effect a summation of body forces (such as gravity) and divergence of stress (pressure and shear stress).
 
===Convective acceleration===
 
[[Image:ConvectiveAcceleration.png|thumb|An example of convection. Though the flow may be steady (time independent), the fluid decelerates as it moves down the diverging duct (assuming incompressible or subsonic compressible flow), hence there is an acceleration happening over position.]]
 
A significant feature of the Navier–Stokes equations is the presence of convective acceleration: the effect of time independent acceleration of a fluid with respect to space. While individual fluid particles are indeed experiencing time dependent acceleration, the convective acceleration of the flow field is a spatial effect, one example being fluid speeding up in a nozzle.
 
Regardless of what kind of fluid is being dealt with, convective acceleration is a [[nonlinear]] effect. Convective acceleration is present in most flows (exceptions include one-dimensional incompressible flow), but its dynamic effect is disregarded in [[creeping flow]] (also called Stokes flow). Convective acceleration is represented by the [[nonlinear]] quantity:
 
:<math>\mathbf{v} \cdot \nabla \mathbf{v}</math>
 
which may be interpreted either as  <math>(\mathbf{v}\cdot\nabla)\,\mathbf{v}</math> or as <math>\mathbf{v}\cdot(\nabla\mathbf{v}),</math> with <math>\nabla \mathbf{v}</math> the [[tensor derivative]] of the velocity vector <math>\mathbf{v}.</math> Both interpretations give the same result, independent of the coordinate system — provided <math>\nabla</math> is interpreted as the [[covariant derivative]].<ref name=Emanuel>{{Citation | last=Emanuel | first=G. | title=Analytical fluid dynamics | publisher=CRC Press | year=2001 | edition=second | isbn=0-8493-9114-8 }} pp. 6–7.</ref>
 
====Interpretation as (v·&nabla;)v====
 
The convection term is often written as
 
:<math>(\mathbf{v} \cdot \nabla) \mathbf{v}</math>
 
where the [[advection|advection operator]] <math>\mathbf{v} \cdot \nabla</math> is used. Usually this representation is preferred as it is simpler than the one in terms of the tensor derivative <math>\nabla \mathbf{v}.</math><ref name=Emanuel/>
 
====Interpretation as v·(&nabla;v)====
Here <math>\nabla \mathbf{v}</math> is the tensor derivative of the velocity vector, equal in Cartesian coordinates to the component-by-component gradient.
 
====In irrotational flow====
The convection term may, by a [[vector calculus identities#Vector dot product|vector calculus identity]], be expressed without a tensor derivative:<ref>See Batchelor (1967), §3.5, p. 160.</ref><ref>{{Citation
| url = http://mathworld.wolfram.com/ConvectiveDerivative.html
| title = Convective Derivative
| author = [[Eric W. Weisstein]]
| publisher = [[MathWorld]]
| accessdate = 2008-05-20
}}</ref>
 
:<math>\mathbf{v} \cdot \nabla \mathbf{v} = \nabla \left( \frac{\|\mathbf{v}\|^2}{2} \right)  + \left( \nabla \times \mathbf{v} \right) \times \mathbf{v}.</math>
 
The form has use in irrotational flow, where the [[Curl (mathematics)|curl]] of the velocity (called [[vorticity]]) <math>\omega=\nabla \times \mathbf{v}</math> is equal to zero. Therefore, this reduces to only
 
:<math>\mathbf{v} \cdot \nabla \mathbf{v} = \nabla \left( \frac{\|\mathbf{v}\|^2}{2} \right).</math>
 
===Stresses===<!--Lift (force) has a wikilink to here-->
 
The effect of stress in the fluid is represented by the <math>\nabla p</math> and <math>\nabla \cdot\boldsymbol{\mathsf{T}}</math> terms; these are [[gradient]]s of surface forces, analogous to stresses in a solid. Here <math>\nabla p</math> is called the pressure gradient and arises from the isotropic part of the [[Cauchy stress tensor]], which has the order two. This part is given by [[normal stress]]es that turn up in almost all situations, dynamic or not. The anisotropic part of the stress tensor gives rise to <math>\nabla \cdot\boldsymbol{\mathsf{T}}</math>, which conventionally describes viscous forces; for incompressible flow, this is only a shear effect. Thus, <math>\boldsymbol{\mathsf{T}}</math> is the [[deviatoric stress tensor]], and the stress tensor is equal to:<ref>Batchelor (1967) p. 142.</ref>
 
:<math>\sigma = -p\boldsymbol{\mathsf{I}} + \boldsymbol{\mathsf{T}}</math>
 
where <math>\boldsymbol{\mathsf{I}}</math> is the 3×3 [[identity matrix]]. Interestingly, in the Navier–Stokes equations themselves only the ''gradient'' of pressure matters, not the pressure itself. The effect of the pressure gradient on the flow is to accelerate the fluid in the direction from high pressure to low pressure.
 
The stress terms ''p'' and <math>\boldsymbol{\mathsf{T}}</math> are yet unknown, so the general form of the equations of motion is not usable to solve problems. Besides the equations of motion—Newton's second law—a force model is needed relating the stresses to the fluid motion.<ref>
{{citation
| first1=Richard P.
| last=Feynman
| authorlink1=R. P. Feynman
| first2=Robert B.
| last2=Leighton
| authorlink2=R. B. Leighton
| first3=Matthew
| last3=Sands
| authorlink3=M. Sands
| year=1963
| title=[[The Feynman Lectures on Physics]]
| isbn=0-201-02116-1
| publisher=Addison-Wesley
| location=Reading, Mass.
}}, Vol. 1, §9–4 and §12–1.</ref>  For this reason, assumptions on the specific behavior of a fluid are made (based on natural observations) and applied in order to specify the stresses in terms of the other flow variables, such as velocity and density.
 
The Navier–Stokes equations result from the following assumptions on the deviatoric stress tensor <math>\boldsymbol{\mathsf{T}}</math>:<ref name=Batchelor_142_148>Batchelor (1967) pp. 142–148.</ref>
 
*the deviatoric stress vanishes for a fluid at rest, and – by [[Galilean invariance]] – also does not depend directly on the flow velocity itself, but only on spatial derivatives of the flow velocity
 
*in the Navier–Stokes equations, the deviatoric stress is expressed as the [[Dyadics#Double-dot product|double-dot product]] of the tensor gradient <math>\nabla\mathbf{v}</math> of the flow velocity with a fourth-order viscosity tensor <math>\boldsymbol{\mathsf{A}}</math>, i.e., <math>\boldsymbol{\mathsf{T}} = \boldsymbol{\mathsf{A}} \left( \nabla\mathbf{v} \right)</math>
 
*the fluid is assumed to be [[isotropic]], as valid for gases and simple liquids, and consequently <math>\boldsymbol{\mathsf{A}}</math> is an isotropic tensor; furthermore, since the deviatoric stress tensor is symmetric, it turns out that it can be expressed in terms of two scalar [[dynamic viscosity|dynamic viscosities]] ''μ'' and ''μ''”: <math>\boldsymbol{\mathsf{T}} = 2 \mu \boldsymbol{\mathsf{E}} + \mu'' \Delta \boldsymbol{\mathsf{I}},</math> where <math>\boldsymbol{\mathsf{E}}=\tfrac12 \left( \nabla\mathbf{v} \right) + \tfrac12 \left( \nabla\mathbf{v} \right)^\text{T}</math> is the rate-of-strain tensor and <math>\Delta = \nabla\cdot\mathbf{v}</math> is the rate of expansion of the flow
 
*the deviatoric stress tensor has zero [[trace (linear algebra)|trace]], so for a three-dimensional flow 2''μ''&nbsp;+&nbsp;3''μ''”&nbsp;=&nbsp;0
 
As a result, in the Navier–Stokes equations the deviatoric stress tensor has the following form:<ref name=Batchelor_142_148/>
 
:<math>\boldsymbol{\mathsf{T}} = 2 \mu \left( \boldsymbol{\mathsf{E}} - \tfrac13 \Delta \boldsymbol{\mathsf{I}} \right)</math>
 
with the quantity between brackets the non-isotropic part of the rate-of-strain tensor <math>\boldsymbol{\mathsf{E}}.</math> The dynamic viscosity ''μ'' does not need to be constant – in general it depends on conditions like temperature and pressure, and in [[turbulence]] modelling the concept of [[eddy viscosity]] is used to approximate the average deviatoric stress.
 
The pressure ''p'' is modelled by use of an [[equation of state]].<ref>Batchelor (1967) p. 165.</ref> For the special case of an [[incompressible flow]], the pressure constrains the flow in such a way that the volume of [[fluid element]]s is constant: [[isochoric process|isochoric flow]] resulting in a [[solenoidal]] velocity field with <math>\nabla\cdot\mathbf{v}=0.</math><ref>Batchelor (1967) p. 75.</ref>
 
===Other forces===
 
The vector field <math>\mathbf{f}</math> represents [[body force]]s. Typically these consist of only [[gravity]] forces, but may include other types (such as electromagnetic forces). In a non-inertial coordinate system, other "forces" such as that associated with [[Fictitious force|rotating coordinates]] may be inserted.
 
Often, these forces are so-called [[conservative force]]s and may be represented as the gradient of some scalar quantity <math>F\,</math>, with <math> \mathbf{f} = \nabla F .</math> Gravity in the ''z'' direction, for example, is the gradient of <math>-\rho g z</math>. Since pressure shows up only as a gradient, this implies that solving a problem without any such body force can be mended to include the body force by using a modified pressure <math> p_m = p - F. </math>  The pressure and force terms on the right hand side of the Navier–Stokes equation become
 
:<math>-\nabla p + \mathbf{f} = -\nabla p + \nabla F = -\nabla \left( p - F \right) = -\nabla p_m.</math>
 
===Other equations===
 
The Navier–Stokes equations are strictly a statement of the conservation of momentum. In order to fully describe fluid flow, more information is needed (how much depends on the assumptions made). This additional information may include boundary data ([[no-slip condition|no-slip]], [[capillary surface]], etc.), the conservation of mass, the conservation of energy, and/or an [[equation of state]].
 
====Continuity equation====
{{main|Continuity equation}}
 
Regardless of the flow assumptions, a statement of the [[conservation of mass]] is generally necessary. This is achieved through the mass [[continuity equation]], given in its most general form as:
 
:<math>\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) = 0</math>
 
or, using the [[substantive derivative]]:
 
:<math>\frac{D\rho}{Dt} + \rho (\nabla \cdot \mathbf{v}) = 0.</math>
 
==Incompressible flow of Newtonian fluids==
 
A simplification of the resulting flow equations is obtained when considering an [[incompressible flow]] of a [[Newtonian fluid]]. The assumption of incompressibility rules out the possibility of [[sound]] or [[shock wave]]s to occur; so this simplification is not useful if these phenomena are of interest. The incompressible flow assumption typically holds well even when dealing with a "compressible" fluid — such as air at room temperature — at low [[Mach number]]s (even when flowing up to about Mach 0.3). Taking the incompressible flow assumption into account and assuming constant viscosity, the Navier–Stokes equations will read, in vector form:<ref name="Ach">See Acheson (1990).</ref>
 
{{Equation box 1
|indent=:
|title='''Navier–Stokes equations''' ''([[Incompressible flow]])''
|equation=<math>\rho \left(\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v}\right) = -\nabla p + \mu \nabla^2 \mathbf{v} + \mathbf{f}.</math>
|cellpadding
|border
|border colour = #0073CF
|background colour=#F5FFFA}}
 
Here '''f''' represents "other" [[body force]]s (forces per unit volume), such as [[gravity]] or [[centrifugal force]]. The [[shear stress]] term <math>\nabla \cdot \boldsymbol{\mathsf{T}}</math> becomes the useful quantity <math>\mu \nabla^2 \mathbf{v}</math> (<math>\nabla^2</math> is the [[vector Laplacian]]) when the fluid is assumed incompressible, homogeneous and Newtonian, where <math>\mu</math> is the (constant) dynamic viscosity.<ref>Batchelor (1967) pp. 21 & 147.</ref>
 
It's well worth observing the meaning of each term (compare to the [[Cauchy momentum equation]]):
 
:<math>
\overbrace{\rho \Big(
\underbrace{\frac{\partial \mathbf{v}}{\partial t}}_{
\begin{smallmatrix}
  \text{Unsteady}\\
  \text{acceleration}
\end{smallmatrix}} +
\underbrace{\mathbf{v} \cdot \nabla \mathbf{v}}_{
\begin{smallmatrix}
  \text{Convective} \\
  \text{acceleration}
\end{smallmatrix}}\Big)}^{\text{Inertia (per volume)}} =
\overbrace{\underbrace{-\nabla p}_{
\begin{smallmatrix}
  \text{Pressure} \\
  \text{gradient}
\end{smallmatrix}} +
\underbrace{\mu \nabla^2 \mathbf{v}}_{\text{Viscosity}}}^{\text{Divergence of stress}} +
\underbrace{\mathbf{f}.}_{
\begin{smallmatrix}
  \text{Other} \\
  \text{body} \\
  \text{forces}
\end{smallmatrix}}
</math>
 
Note that only the convective terms are nonlinear for incompressible Newtonian flow. The convective acceleration is an acceleration caused by a (possibly steady) change in velocity over ''position'', for example the speeding up of fluid entering a converging [[nozzle]]. Though individual fluid particles are being accelerated and thus are under unsteady motion, the flow field (a velocity distribution) will not necessarily be time dependent.
 
Another important observation is that the viscosity is represented by the [[vector Laplacian]] of the velocity field (interpreted here as the difference between the velocity at a point and the mean velocity in a small volume around). This implies that – for a Newtonian fluid – viscosity operates in a ''diffusion of momentum'', in much the same way as the [[diffusion]] of heat seen in the [[heat equation]] (which also involves the Laplacian).
 
If temperature effects are also neglected, the only "other" equation (apart from initial/boundary conditions) needed is the mass continuity equation. Under the assumption of incompressibility, the density of a [[fluid parcel]] is constant, and when using the substantive derivative it follows easily that the [[Navier–Stokes equations#Continuity equation|continuity equation]] simplifies to:
 
:<math>\nabla \cdot \mathbf{v} = 0.</math>
 
This is more specifically a statement of the conservation of volume (see [[divergence]] and [[isochoric process]]).
 
These equations are commonly used in 3 coordinates systems: [[Cartesian coordinate system|Cartesian]], [[Cylindrical coordinate system|cylindrical]], and [[Spherical coordinate system|spherical]]. While the Cartesian equations seem to follow directly from the vector equation above, the vector form of the  Navier–Stokes equation involves some [[tensor calculus]] which means that writing it in other coordinate systems is not as simple as doing so for scalar equations (such as the [[heat equation]]).
 
===Cartesian coordinates===
With the velocity vector expanded as <math>\mathbf{v} = (u,v,w)</math>, we may write the vector equation explicitly,
 
:<math>\begin{align}
  \rho \left(\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} + w \frac{\partial u}{\partial z}\right)
    &= -\frac{\partial p}{\partial x} + \mu \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2}\right) + \rho g_x \\
  \rho \left(\frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y}+ w \frac{\partial v}{\partial z}\right)
    &= -\frac{\partial p}{\partial y} + \mu \left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} + \frac{\partial^2 v}{\partial z^2}\right) + \rho g_y \\
  \rho \left(\frac{\partial w}{\partial t} + u \frac{\partial w}{\partial x} + v \frac{\partial w}{\partial y}+ w \frac{\partial w}{\partial z}\right)
    &= -\frac{\partial p}{\partial z} + \mu \left(\frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial y^2} + \frac{\partial^2 w}{\partial z^2}\right) + \rho g_z.
\end{align}</math>
 
Note that gravity has been accounted for as a body force, and the values of ''g<sub>x</sub>'', ''g<sub>y</sub>'', ''g<sub>z</sub>'' will depend on the orientation of gravity with respect to the chosen set of coordinates.
 
The continuity equation reads:
:<math>{\partial \rho \over \partial t} + {\partial (\rho u ) \over \partial x} + {\partial (\rho v) \over \partial y} + {\partial (\rho w) \over \partial z} = 0.</math>
 
When the flow is incompressible, <math>\rho</math> does not change for any fluid parcel, and its [[material derivative]] vanishes: <math>{D\rho \over Dt} = 0</math>. The continuity equation is reduced to:
 
:<math>{\partial u \over \partial x} + {\partial v \over \partial y} + {\partial w \over \partial z} = 0.</math>
 
The velocity components (the dependent variables to be solved for) are typically named ''u'', ''v'', ''w''. This system of four equations comprises the most commonly used and studied form. Though comparatively more compact than other representations, this is still a [[nonlinear]] system of [[partial differential equations]] for which solutions are difficult to obtain.
 
===Cylindrical coordinates===
A change of variables on the Cartesian equations will yield<ref name="Ach"/> the following momentum equations for ''r'', <math>\phi</math>, and ''z'':
 
:<math>\begin{align}
  r:\ &\rho \left(\frac{\partial u_r}{\partial t} + u_r \frac{\partial u_r}{\partial r} +
                  \frac{u_{\phi}}{r} \frac{\partial u_r}{\partial \phi} + u_z \frac{\partial u_r}{\partial z} - \frac{u_{\phi}^2}{r}\right) = {}\\
      &-\frac{\partial p}{\partial r} + \mu \left[\frac{1}{r}\frac{\partial}{\partial r}\left(r \frac{\partial u_r}{\partial r}\right) +
        \frac{1}{r^2}\frac{\partial^2 u_r}{\partial \phi^2} + \frac{\partial^2 u_r}{\partial z^2} - \frac{u_r}{r^2} -
        \frac{2}{r^2}\frac{\partial u_\phi}{\partial \phi} \right] + \rho g_r \\
  \phi:\ &\rho \left(\frac{\partial u_{\phi}}{\partial t} + u_r \frac{\partial u_{\phi}}{\partial r} +
                      \frac{u_{\phi}}{r} \frac{\partial u_{\phi}}{\partial \phi} + u_z \frac{\partial u_{\phi}}{\partial z} + \frac{u_r u_{\phi}}{r}\right) = {}\\
        &-\frac{1}{r}\frac{\partial p}{\partial \phi} + \mu \left[\frac{1}{r}\frac{\partial}{\partial r}\left(r \frac{\partial u_{\phi}}{\partial r}\right) +
          \frac{1}{r^2}\frac{\partial^2 u_{\phi}}{\partial \phi^2} + \frac{\partial^2 u_{\phi}}{\partial z^2} + \frac{2}{r^2}\frac{\partial u_r}{\partial \phi} -
          \frac{u_{\phi}}{r^2}\right] + \rho g_{\phi} \\
  z:\ &\rho \left(\frac{\partial u_z}{\partial t} + u_r \frac{\partial u_z}{\partial r} + \frac{u_{\phi}}{r} \frac{\partial u_z}{\partial \phi} +
              u_z \frac{\partial u_z}{\partial z}\right) = {}\\
      &-\frac{\partial p}{\partial z} + \mu \left[\frac{1}{r}\frac{\partial}{\partial r}\left(r \frac{\partial u_z}{\partial r}\right) +
        \frac{1}{r^2}\frac{\partial^2 u_z}{\partial \phi^2} + \frac{\partial^2 u_z}{\partial z^2}\right] + \rho g_z.
\end{align}</math>
 
The gravity components will generally not be constants, however for most applications either the coordinates are chosen so that the gravity components are constant or else it is assumed that gravity is counteracted by a pressure field (for example, flow in horizontal pipe is treated normally without gravity and without a vertical pressure gradient). The continuity equation is:
 
:<math>
  \frac{\partial\rho}{\partial t} + \frac{1}{r}\frac{\partial}{\partial r}\left(\rho r u_r\right) +
  \frac{1}{r}\frac{\partial (\rho u_\phi)}{\partial \phi} + \frac{\partial (\rho u_z)}{\partial z}
    = 0.
</math>
 
This cylindrical representation of the incompressible Navier–Stokes equations is the second most commonly seen (the first being Cartesian above). Cylindrical coordinates are chosen to take advantage of symmetry, so that a velocity component can disappear. A very common case is axisymmetric flow with the assumption of no tangential velocity (<math>u_{\phi} = 0</math>), and the remaining quantities are independent of <math>\phi</math>:
 
:<math>\begin{align}
  \rho \left(\frac{\partial u_r}{\partial t} + u_r \frac{\partial u_r}{\partial r} + u_z \frac{\partial u_r}{\partial z}\right)
    &= -\frac{\partial p}{\partial r} + \mu \left[\frac{1}{r}\frac{\partial}{\partial r}\left(r \frac{\partial u_r}{\partial r}\right) +
      \frac{\partial^2 u_r}{\partial z^2} - \frac{u_r}{r^2}\right] + \rho g_r \\
  \rho \left(\frac{\partial u_z}{\partial t} + u_r \frac{\partial u_z}{\partial r} + u_z \frac{\partial u_z}{\partial z}\right)
    &= -\frac{\partial p}{\partial z} + \mu \left[\frac{1}{r}\frac{\partial}{\partial r}\left(r \frac{\partial u_z}{\partial r}\right) +
      \frac{\partial^2 u_z}{\partial z^2}\right] + \rho g_z \\
  \frac{1}{r}\frac{\partial}{\partial r}\left(r u_r\right) + \frac{\partial u_z}{\partial z} &= 0.
\end{align}</math>
 
===Spherical coordinates===
In [[spherical coordinates]], the ''r'', ''ϕ'', and ''θ'' momentum equations are<ref name="Ach"/> (note the convention used: ''θ'' is polar angle, or [[colatitude]],<ref>{{Citation
| url = http://mathworld.wolfram.com/SphericalCoordinates.html
| title = Spherical Coordinates
| author = [[Eric W. Weisstein]]
| publisher = [[MathWorld]]
| date = 2005-10-26
| accessdate = 2008-01-22
}}</ref> 0 ≤ ''θ'' ≤ π):
:<math>\begin{align}
  r:\  &\rho \left(\frac{\partial u_r}{\partial t} + u_r \frac{\partial u_r}{\partial r} + \frac{u_{\phi}}{r \sin(\theta)} \frac{\partial u_r}{\partial \phi} +
                  \frac{u_{\theta}}{r} \frac{\partial u_r}{\partial \theta} - \frac{u_{\phi}^2 + u_{\theta}^2}{r}\right) =
          -\frac{\partial p}{\partial r} + \rho g_r + \\
      &\mu \left[\frac{1}{r^2} \frac{\partial}{\partial r}\left(r^2 \frac{\partial u_r}{\partial r}\right) +
                  \frac{1}{r^2 \sin(\theta)^2} \frac{\partial^2 u_r}{\partial \phi^2} +
                  \frac{1}{r^2 \sin(\theta)} \frac{\partial}{\partial \theta}\left(\sin(\theta) \frac{\partial u_r}{\partial \theta}\right) - 2\frac{u_r +
                  \frac{\partial u_{\theta}}{\partial \theta} + u_{\theta} \cot(\theta)}{r^2} - \frac{2}{r^2 \sin(\theta)} \frac{\partial u_{\phi}}{\partial \phi}
            \right] \\
 
  \phi:\  &\rho \left(\frac{\partial u_{\phi}}{\partial t} + u_r \frac{\partial u_{\phi}}{\partial r} +
                      \frac{u_{\phi}}{r \sin(\theta)} \frac{\partial u_{\phi}}{\partial \phi} + \frac{u_{\theta}}{r} \frac{\partial u_{\phi}}{\partial \theta} +
                      \frac{u_r u_{\phi} + u_{\phi} u_{\theta} \cot(\theta)}{r}\right) =
              -\frac{1}{r \sin(\theta)} \frac{\partial p}{\partial \phi} + \rho g_{\phi} + \\
          &\mu \left[\frac{1}{r^2} \frac{\partial}{\partial r}\left(r^2 \frac{\partial u_{\phi}}{\partial r}\right) +
                    \frac{1}{r^2 \sin(\theta)^2} \frac{\partial^2 u_{\phi}}{\partial \phi^2} +
                    \frac{1}{r^2 \sin(\theta)} \frac{\partial}{\partial \theta}\left(\sin(\theta) \frac{\partial u_{\phi}}{\partial \theta}\right) +
                    \frac{2 \sin(\theta) \frac{\partial u_r}{\partial \phi} + 2 \cos(\theta) \frac{\partial u_{\theta}}{\partial \phi} -
                    u_{\phi}}{r^2 \sin(\theta)^2}
              \right] \\
 
  \theta:\  &\rho \left(\frac{\partial u_{\theta}}{\partial t} + u_r \frac{\partial u_{\theta}}{\partial r} +
                        \frac{u_{\phi}}{r \sin(\theta)} \frac{\partial u_{\theta}}{\partial \phi} +
                        \frac{u_{\theta}}{r} \frac{\partial u_{\theta}}{\partial \theta} + \frac{u_r u_{\theta} - u_{\phi}^2 \cot(\theta)}{r}\right) =
                -\frac{1}{r} \frac{\partial p}{\partial \theta} + \rho g_{\theta} + \\
            &\mu \left[\frac{1}{r^2} \frac{\partial}{\partial r}\left(r^2 \frac{\partial u_{\theta}}{\partial r}\right) +
                      \frac{1}{r^2 \sin(\theta)^2} \frac{\partial^2 u_{\theta}}{\partial \phi^2} +
                      \frac{1}{r^2 \sin(\theta)} \frac{\partial}{\partial \theta}\left(\sin(\theta) \frac{\partial u_{\theta}}{\partial \theta}\right) +
                      \frac{2}{r^2} \frac{\partial u_r}{\partial \theta} - \frac{u_{\theta} +
                      2 \cos(\theta) \frac{\partial u_{\phi}}{\partial \phi}}{r^2 \sin(\theta)^2}
                \right].
\end{align}</math>
 
Mass continuity will read:
 
:<math>
  \frac{\partial \rho}{\partial t} + \frac{1}{r^2}\frac{\partial}{\partial r}\left(\rho r^2 u_r\right) +
  \frac{1}{r \sin(\theta)}\frac{\partial \rho u_\phi}{\partial \phi} +
  \frac{1}{r \sin(\theta)}\frac{\partial}{\partial \theta}\left(\sin(\theta) \rho u_\theta\right)
    = 0.
</math>
 
These equations could be (slightly) compacted by, for example, factoring <math>1/r^2</math> from the viscous terms. However, doing so would undesirably alter the structure of the Laplacian and other quantities.
 
===Stream function formulation===
Taking the [[Curl (mathematics)|curl]] of the Navier–Stokes equation results in the elimination of pressure. This is especially easy to see if 2D Cartesian flow is assumed (<math>w = 0</math> and no dependence of anything on ''z''), where the equations reduce to:
 
:<math>\begin{align}
  \rho \left(\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y}\right)
    &= -\frac{\partial p}{\partial x} + \mu \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}\right) + \rho g_x \\
  \rho \left(\frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y}\right)
    &= -\frac{\partial p}{\partial y} + \mu \left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2}\right) + \rho g_y.
\end{align}</math>
 
Differentiating the first with respect to ''y'', the second with respect to ''x'' and subtracting the resulting equations will eliminate pressure and any [[conservative force]]. Defining the [[stream function]] <math>\psi</math> through
 
:<math>u = \frac{\partial \psi}{\partial y}; \quad v = -\frac{\partial \psi}{\partial x}</math>
 
results in mass continuity being unconditionally satisfied (given the stream function is continuous), and then incompressible Newtonian 2D momentum and mass conservation degrade into one equation:
 
:<math>\frac{\partial}{\partial t}\left(\nabla^2 \psi\right) + \frac{\partial \psi}{\partial y} \frac{\partial}{\partial x}\left(\nabla^2 \psi\right) - \frac{\partial \psi}{\partial x} \frac{\partial}{\partial y}\left(\nabla^2 \psi\right) = \nu \nabla^4 \psi</math>
 
where <math>\nabla^4</math> is the (2D) [[biharmonic operator]] and <math>\nu</math> is the [[kinematic viscosity]], <math>\nu = \frac{\mu}{\rho}</math>. We can also express this compactly using the [[Jacobian matrix and determinant|Jacobian determinant]]:
 
:<math>\frac{\partial}{\partial t}\left(\nabla^2 \psi\right) + \frac{\partial\left(\psi, \nabla^2\psi \right)}{\partial\left(y,x\right)} = \nu \nabla^4 \psi.</math>
 
This single equation together with appropriate boundary conditions describes 2D fluid flow, taking only kinematic viscosity as a parameter. Note that the equation for [[creeping flow]] results when the left side is assumed zero.
 
In [[axisymmetric]] flow another stream function formulation, called the [[Stokes stream function]], can be used to describe the velocity components of an incompressible flow with one [[scalar (mathematics)|scalar]] function.
 
===Pressure-free velocity formulation===
The incompressible Navier–Stokes equation is a [[differential algebraic equation]], having the inconvenient feature that there is no explicit mechanism for advancing the pressure in time. Consequently, much effort has been expended to eliminate the pressure from all or part of the computational process. The stream function formulation above eliminates the pressure (in 2D) at the expense of introducing higher derivatives and elimination of the velocity, which is the primary variable of interest.
 
The incompressible Navier–Stokes equation is composite, the sum of two orthogonal equations,
:<math>\begin{align}
   \frac{\partial\mathbf{v}}{\partial t} &= \Pi^S\left(-\mathbf{v}\cdot\nabla\mathbf{v} + \nu\nabla^2\mathbf{v}\right) + \mathbf{f}^S \\
                      \rho^{-1}\nabla p &= \Pi^I\left(-\mathbf{v}\cdot\nabla\mathbf{v} + \nu\nabla^2\mathbf{v}\right) + \mathbf{f}^I
\end{align}</math>
 
where <math>\Pi^S</math> and <math>\Pi^I</math> are solenoidal and irrotational projection operators satisfying <math>\Pi^S+\Pi^I=1</math> and
<math>\mathbf{f}^S</math> and <math>\mathbf{f}^I</math> are the non-conservative and conservative parts of the body force. This result follows from the [[Helmholtz decomposition|Helmholtz Theorem]] (also known as the fundamental theorem of vector calculus). The first equation is a pressureless governing equation for the velocity, while the second equation for the pressure is a functional of the velocity and is related to the pressure Poisson equation.
 
The explicit functional form of the projection operator in 3D is found from the [[Helmholtz decomposition|Helmholtz Theorem]]
:<math>\Pi^S\,\mathbf{F}(\mathbf{r}) = \frac{1}{4\pi}\nabla\times\int \frac{\nabla^\prime\times\mathbf{F}(\mathbf{r}^\prime)}{|\mathbf{r}-\mathbf{r}^\prime|} d V^\prime, \quad \Pi^I = 1-\Pi^S</math>
 
with a similar structure in 2D. Thus the governing equation is an [[integro-differential equation]] and not convenient for numerical computation.
 
An equivalent weak or variational form of the equation, proved to produce the same velocity solution as the Navier–Stokes equation,<ref>
{{citation
| last = Temam  | first = Roger
| author-link = Roger Temam
| title = Navier–Stokes Equations, Theory and Numerical Analysis
| pages = 107–112
| year = 2001  |  publisher = AMS Chelsea
}}</ref> is given by,
:<math>\left(\mathbf{w},\frac{\partial\mathbf{v}}{\partial t}\right) = -(\mathbf{w},\mathbf{v}\cdot\nabla\mathbf{v})-\nu(\nabla\mathbf{w}: \nabla\mathbf{v})+(\mathbf{w},\mathbf{f}^S)</math>
 
for divergence-free test functions <math>\mathbf{w}</math> satisfying appropriate boundary conditions. Here, the projections are accomplished by the orthogonality of the solenoidal and irrotational function spaces. The discrete form of this is imminently suited to finite element computation of divergence-free flow, as we shall see in the next section. There we will be able to address the question, "How does one specify pressure-driven (Poiseuille) problems with a pressureless governing equation?"
 
The absence of pressure forces from the governing velocity equation demonstrates that the equation is not a dynamic one, but rather a kinematic equation where the divergence-free condition serves the role of a conservation law. This all would seem to refute the frequent statements that the incompressible pressure enforces the divergence-free condition.
 
====Discrete velocity====
With partitioning of the problem domain and defining [[basis function]]s on the partitioned domain, the discrete form of the governing equation is,
:<math>\left(\mathbf{w}_i, \frac{\partial\mathbf{v}_j}{\partial t}\right) = -(\mathbf{w}_i, \mathbf{v}\cdot\nabla\mathbf{v}_j) - \nu(\nabla\mathbf{w}_i: \nabla\mathbf{v}_j) + \left(\mathbf{w}_i, \mathbf{f}^S\right).</math>
 
It is desirable to choose basis functions which reflect the essential feature of incompressible flow – the elements must be divergence-free. While the velocity is the variable of interest, the existence of the stream function or vector potential is necessary by the [[Helmholtz decomposition|Helmholtz Theorem]]. Further, to determine fluid flow in the absence of a pressure gradient, one can specify the difference of stream function values across a 2D channel, or the line integral of the tangential component of the vector potential around the channel in 3D, the flow being given by [[Stokes' Theorem]]. Discussion will be restricted to 2D in the following.
 
We further restrict discussion to continuous Hermite finite elements which have at least first-derivative degrees-of-freedom. With this, one can draw a large number of candidate triangular and rectangular elements from the [[Bending of plates|plate-bending]] literature.
These elements have derivatives as components of the gradient. In 2D, the gradient and curl of a scalar are clearly orthogonal, given by the expressions,
:<math>\nabla\phi = \left[\frac{\partial \phi}{\partial x},\,\frac{\partial \phi}{\partial y}\right]^\mathrm{T}, \quad
\nabla\times\phi = \left[\frac{\partial \phi}{\partial y},\,-\frac{\partial \phi}{\partial x}\right]^\mathrm{T}.</math>
 
Adopting continuous plate-bending elements, interchanging the derivative degrees-of-freedom and changing the sign of the appropriate one gives many families of stream function elements.
 
Taking the curl of the scalar stream function elements gives divergence-free velocity elements.<ref>
{{Citation
  | last = Holdeman  | first = J.T.
  | author-link = J.T. Holdeman
  | title = A Hermite finite element method for incompressible fluid flow
  | journal = Int. J. Numer. Meth. FLuids
  | volume = 64  | pages = 376–408  | year = 2010
  | doi = 10.1002/fld.2154
  | issue = 4 |bibcode = 2010IJNMF..64..376H
}}</ref><ref>
{{Citation
  | last = Holdeman  | first = J.T.
  | author-link = J.T. Holdeman
  | last2 = Kim  | first2 = J.W.
  | title = Computation of incompressible thermal flows using Hermite finite elements
  | journal = Comput. Methods Appl. Mech. Engrg.
  | volume = 199  | pages = 3297–3304  | year = 2010
  | authorlink2 = Jin-Whan Kim
  | doi = 10.1016/j.cma.2010.06.036
  | issue = 49–52 |bibcode = 2010CMAME.199.3297H
}}</ref> The requirement that the stream function elements be continuous assures that the normal component of the velocity is continuous across element interfaces, all that is necessary for vanishing divergence on these interfaces.
 
Boundary conditions are simple to apply. The stream function is constant on no-flow surfaces, with no-slip velocity conditions on surfaces.
Stream function differences across open channels determine the flow. No boundary conditions are necessary on open boundaries, though consistent values may be used with some problems. These are all Dirichlet conditions.
 
The algebraic equations to be solved are simple to set up, but of course are [[#Nonlinearity|non-linear]], requiring iteration of the linearized equations.
 
Similar considerations apply to three-dimensions, but extension from 2D is not immediate because of the vector nature of the potential, and there exists no simple relation between the gradient and the curl as was the case in 2D.
 
====Pressure recovery====
Recovering pressure from the velocity field is easy. The discrete weak equation for the pressure gradient is,
:<math>(\mathbf{g}_i, \nabla p) = -(\mathbf{g}_i, \mathbf{v}\cdot\nabla\mathbf{v}_j) - \nu(\nabla\mathbf{g}_i: \nabla\mathbf{v}_j) + (\mathbf{g}_i, \mathbf{f}^I)</math>
 
where the test/weight functions are irrotational. Any conforming scalar finite element may be used. However, the pressure gradient field may also be of interest. In this case one can use scalar Hermite elements for the pressure. For the test/weight functions <math>\mathbf{g}_i</math> one would choose the irrotational vector elements obtained from the gradient of the pressure element.
 
==Compressible flow of Newtonian fluids==
 
There are some phenomena that are closely linked with fluid [[compressibility]]. One of the obvious examples is [[sound]]. Description of such phenomena requires more general presentation of the Navier–Stokes equation that takes into account fluid compressibility. If viscosity is assumed a constant, one additional term appears, as shown here:<ref>Landau & Lifshitz (1987) pp. 44–45.</ref><ref>Batchelor (1967) pp. 147 & 154.</ref>
 
:<math>\rho \left(\frac{\partial  \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v}\right) = -\nabla p + \mu \nabla^2 \mathbf{v} + \frac{\mu}{3} \nabla (\nabla \cdot \mathbf{v}) + \mathbf{f}. </math>
 
==Application to specific problems==
The Navier–Stokes equations, even when written explicitly for specific fluids, are rather generic in nature and their proper application to specific problems can be very diverse. This is partly because there is an enormous variety of problems that may be modeled, ranging from as simple as the distribution of static pressure to as complicated as multiphase flow driven by [[surface tension]].
 
Generally, application to specific problems begins with some flow assumptions and initial/boundary condition formulation, this may be followed by [[Scale analysis (mathematics)|scale analysis]] to further simplify the problem.
 
[[Image:NSConvection.png|thumb|400px|Visualization of a) parallel flow and b) radial flow.]]
 
a) 
Assume steady, parallel, one dimensional, non-convective pressure-driven flow between parallel plates, the resulting scaled (dimensionless) [[boundary value problem]] is:
:<math>\frac{d^2 u}{d y^2} = -1; \quad u(0) = u(1) = 0.</math>
 
The boundary condition is the [[no slip condition]]. This problem is easily solved for the flow field:
:<math>u(y) = \frac{y - y^2}{2}.</math>
 
From this point onward more quantities of interest can be easily obtained, such as viscous drag force or net flow rate.
 
b)
Difficulties may arise when the problem becomes slightly more complicated. A seemingly modest twist on the parallel flow above would be the ''radial'' flow between parallel plates; this involves convection and thus non-linearity. The velocity field may be represented by a function <math>f(z)</math> that must satisfy:
:<math>\frac{d^2 f}{d z^2} + R f^2 = -1; \quad f(-1) = f(1) = 0.</math>
 
This [[ordinary differential equation]] is what is obtained when the Navier–Stokes equations are written and the flow assumptions applied (additionally, the pressure gradient is solved for). The [[nonlinear]] term makes this a very difficult problem to solve analytically (a lengthy [[Implicit function|implicit]] solution may be found which involves [[elliptic integrals]] and [[Cubic formula|roots of cubic polynomials]]). Issues with the actual existence of solutions arise for R > 1.41 (approximately; this is not the square root of 2), the parameter R being the [[Reynolds number]] with appropriately chosen scales.<ref name="TM Shah">{{cite web|last=Shah |first=Tasneem Mohammad|title=Analysis of the multigrid method|url=http://adsabs.harvard.edu/abs/1989STIN...9123418S|publisher=Published by Dr. TM Shah; republished by The Smithsonian/NASA Astrophysics Data System|accessdate=8 January 2013|year=1972}}</ref>  This is an example of flow assumptions losing their applicability, and an example of the difficulty in "high" Reynolds number flows.<ref name="TM Shah"/>
 
==Exact solutions of the Navier–Stokes equations==
 
Some exact solutions to the Navier–Stokes equations exist. Examples of degenerate cases — with the non-linear terms in the Navier–Stokes equations equal to zero — are [[Hagen-Poiseuille equation|Poiseuille flow]], [[Couette flow]] and the oscillatory [[Stokes boundary layer]]. But also more interesting examples, solutions to the full non-linear equations, exist; for example the [[Taylor–Green vortex]].<ref>
{{citation
| journal=Annual Review of Fluid Mechanics
| volume=23
| pages=159–177
| year=1991
| doi=10.1146/annurev.fl.23.010191.001111
| title=Exact solutions of the steady-state Navier–Stokes equations
| first=C.Y.
| last=Wang
|bibcode = 1991AnRFM..23..159W
}}</ref><ref>
Landau & Lifshitz (1987) pp. 75–88.
</ref><ref>
{{citation
| last1=Ethier
| first1=C.R.
| last2=Steinman
| first2=D.A.
| title = Exact fully 3D Navier–Stokes solutions for benchmarking
| journal=International Journal for Numerical Methods in Fluids
| year=1994
| volume=19
| issue=5
| pages=369–375
| doi=10.1002/fld.1650190502
|bibcode = 1994IJNMF..19..369E
}}</ref>
Note that the existence of these exact solutions does not imply they are stable: turbulence may develop at higher [[Reynolds number]]s.
 
{{hidden
|A two dimensional example
|For example, in the case of an unbounded planar domain with '''two-dimensional''' — incompressible and stationary — flow in [[polar coordinates]] <math>(r,\phi),</math> the velocity components <math>(u_r,u_\phi)</math> and pressure ''p'' are:<ref>{{citation
| first=O.A.
| last= Ladyzhenskaya
| year=1969
| title=The Mathematical Theory of viscous Incompressible Flow
| edition=2nd
| page=preface, xi
}}</ref>
 
:<math>
    u_r = \frac{A}{r}, \qquad
  u_\phi = B\left(\frac{1}{r} - r^{\frac{A}{\nu} + 1}\right), \qquad
      p = -\frac{A^2 + B^2}{2r^2} - \frac{2B^2 \nu r^\frac{A}{\nu}}{A} + \frac{B^2 r^\left(\frac{2A}{\nu} + 2\right)}{2\frac{A}{\nu} + 2}
</math>
 
where A and B  are arbitrary constants. This solution is valid in the domain ''r''&nbsp;≥&nbsp;1 and for <math> A < -2\nu</math>.
 
In Cartesian coordinates, when the viscosity is zero (<math>\nu = 0</math>), this is:
:<math>
  \mathbf{v}(x,y) = \frac{1}{x^2 + y^2}\begin{pmatrix} Ax + By \\ Ay - Bx \end{pmatrix}, \qquad
          p(x,y) = -\frac{A^2 + B^2}{2(x^2 + y^2)}
</math>
 
|style = border: 1px solid lightgray; width: 90%;
|headerstyle = text-align:left
}}
 
{{hidden
|A three dimensional example
|For example, in the case of an unbounded Euclidean domain with '''three-dimensional''' — incompressible, stationary and with zero viscosity (<math>\nu=0</math>) — radial flow in [[Cartesian coordinates]] <math>(x,y,z),</math> the velocity vector <math>\mathbf{v}</math> and pressure ''p'' are:{{citation needed|date=January 2014}}
 
:<math>
  \mathbf{v}(x, y, z) = \frac{A}{x^2 + y^2 + z^2}\begin{pmatrix} x \\ y\\ z \end{pmatrix}, \qquad
          p(x, y, z) = -\frac{A^2}{2(x^2 + y^2 + z^2)}.
</math>
 
There is a singularity at <math>x = y = z = 0</math>.
 
|style = border: 1px solid lightgray; width: 90%;
|headerstyle = text-align:left
}}
 
===A three dimensional steady-state vortex solution===
[[Image:Hopfkeyrings.jpg|right|250px|thumb|Some of the flow lines along a [[Hopf fibration]].]]
A nice steady-state example with no singularities comes from considering the flow along the lines of a [[Hopf fibration]]. Let r be a constant radius to the inner coil. One set of solutions is given by:<ref>{{citation
| url= http://www.jetp.ac.ru/cgi-bin/dn/e_055_01_0069.pdf
| year=1982
| title=Topological solitons in magnetohydrodynamics
| first=A. M
| last= Kamchatno
}}</ref>
:<math>\begin{align}
        \rho(x, y, z) &= \frac{3B}{r^2 + x^2 + y^2 + z^2} \\
          p(x, y, z) &= \frac{-A^2B}{(r^2 + x^2 + y^2 + z^2)^3} \\
  \mathbf{v}(x, y, z) &= \frac{A}{(r^2 + x^2 + y^2 + z^2)^2}\begin{pmatrix} 2(-ry + xz) \\ 2(rx + yz) \\ r^2 - x^2 - y^2 + z^2 \end{pmatrix} \\
                    g &= 0 \\
                  \mu &= 0
\end{align}</math>
 
for arbitrary constants A and B. This is a solution in a non-viscous gas (compressible fluid) whose density, velocities and pressure goes to zero far from the origin. (Note this is not a solution to the Clay Millennium problem because that refers to incompressible fluids where <math>\rho</math> is a constant, neither does it deal with the uniqueness of the Navier–Stokes equations with respect to any [[turbulence]] properties.) It is also worth pointing out that the components of the velocity vector are exactly those from the [[Pythagorean quadruple]] parametrization. Other choices of density and pressure are possible with the same velocity field:
 
{{hidden
|Other choices of density and pressure
|Another choice of pressure and density with the same velocity vector above is one where the pressure and density fall to zero at the origin and are highest in the central loop at <math>z = 0, x^2 + y^2 = r^2</math>:
:<math>\begin{align}
   \rho(x, y, z) &= \frac{20B(x^2 + y^2)}{(r^2 + x^2 + y^2 + z^2)^3} \\
    p(x, y, z) &= \frac{-A^2B}{(r^2 + x^2 + y^2 + z^2)^4} + \frac{-4A^2B(x^2 + y^2)}{(r^2 + x^2 + y^2 + z^2)^5}.
\end{align}</math>
 
In fact in general there are simple solutions for any polynomial function f where the density is:
:<math>\rho(x, y, z) = \frac{1}{r^2 + x^2 + y^2 + z^2} f\left(\frac{x^2 + y^2}{(r^2 + x^2 + y^2 + z^2)^2}\right).</math>
 
|style = border: 1px solid lightgray; width: 90%;
|headerstyle = text-align:left
}}
 
==Wyld diagrams==<!-- [[Wyld diagrams]] redirects here-->
'''Wyld diagrams''' are bookkeeping [[graph (mathematics)|graphs]] that correspond to the Navier–Stokes equations via a [[perturbation theory|perturbation expansion]] of the fundamental [[continuum mechanics]]. Similar to the [[Feynman diagram]]s in [[quantum field theory]], these diagrams are an extension of [[Mstislav Keldysh|Keldysh]]'s technique for nonequilibrium processes in fluid dynamics.  In other words, these diagrams assign [[graph theory|graphs]] to the (often) [[turbulence|turbulent]] phenomena in turbulent fluids by allowing [[correlation function|correlated]] and interacting fluid particles to obey [[stochastic processes]] associated to [[pseudo-random]] [[function (mathematics)|functions]] in [[probability distribution]]s.<ref>{{citation | title=Renormalization methods: A guide for beginners | first=W.D. | last=McComb | publisher=Oxford University Press | year=2008 | isbn=0-19-923652-6 }} pp. 121–128.</ref>
 
==Navier–Stokes equations use in games==<!-- [[Wyld diagrams]] redirects here-->
The Navier–Stokes equations are used extensively in video games in order to model a wide variety of natural phenomena. Simulations of small-scale gaseous fluids, such as fire and smoke are often based on the seminal paper "Real-Time Fluid Dynamics for Games"<ref>{{citation
| url= http://www.dgp.toronto.edu/people/stam/reality/Research/pdf/GDC03.pdf
| year=2003
| title=Real-Time Fluid Dynamics for Games
| first=Jos
| last=Stam
}}</ref> by [[Jos Stam]], which elaborates one of the methods proposed in Stam's earlier, more famous paper "Stable Fluids"<ref>{{citation
| url= http://www.dgp.toronto.edu/people/stam/reality/Research/pdf/ns.pdf
| year=1999
| title=Stable Fluids
| first=Jos
| last=Stam
}}</ref> from 1999. Stam proposes stable fluid simulation using a Navier-Stokes solution method from 1968, coupled with an unconditionally stable semi-Lagrangian advection scheme, as first proposed in 1992. More recent implementations based upon this work run on the GPU as opposed to the CPU and achieve a much higher degree of performance.<ref>{{citation
| year=2004
| title=GPUGems - Fast Fluid Dynamics Simulation on the GPU
| chapter=38
| first=Mark J.
| last=Harris
}}</ref><ref>{{citation
| year=2007
| title=ShaderX5 - Explicit Early-Z Culling for Efficient Fluid Flow Simulation
| chapter=9.6
| pages=553–564
| first=P.
| last=Sander
| first2=N.
| last2=Tatarchuck
| first3=J.L.
| last3=Mitchell
}}</ref>
Many improvements have been proposed to Stam's original work, which suffers inherently from high numerical dissipation in both velocity and mass.
 
Oceans and other large-scale liquid simulations, on the other hand, are usually [[procedural animation]]s based on Jerry Tessendorf's work "Simulating Ocean Water",<ref>{{citation
| url=http://graphics.ucsd.edu/courses/rendering/2005/jdewall/tessendorf.pdf
| year=1999
| title=Simulating Ocean Water
| first=Jerry
| last=Tessendorf
}}</ref> also from 1999. Due to the real-time constraint, games can only afford very little CPU time for fluid simulation. As a consequence, only very few games offer completely interactive large-scale liquid simulation. Currently (as of 2013), those games (such as [[From Dust]]) are exclusively based on heightfield-methods.
 
An introduction to interactive fluid simulation can be found in the 2007 [[ACM SIGGRAPH]] course "[http://www.cs.ubc.ca/~rbridson/fluidsimulation/ Fluid Simulation for Computer Animation]" by Robert Bridson and Matthias Müller-Fischer, available online.
 
== See also ==
{{columns-list|colwidth=25em|
*[[Boltzmann equation]]
*[[Churchill–Bernstein equation]]
*[[Coandă effect]]
*[[Computational fluid dynamics]]
*[[Euler equations (fluid dynamics)|Euler equations]]
*[[Fokker–Planck equation]]
*[[Hagen–Poiseuille flow from the Navier–Stokes equations]]
*[[Large eddy simulation]]
*[[Mach number]]
*[[Multiphase flow]]
*[[Navier–Stokes existence and smoothness]] — one of the [[Millennium Prize Problems]] as stated by the [[Clay Mathematics Institute]]
*[[Pressure-correction method]]
*[[Reynolds transport theorem]]
*[[Reynolds-averaged Navier–Stokes equations]]
*[[Adhémar Jean Claude Barré de Saint-Venant]]
*[[Vlasov equation]]
}}
 
==Notes==
{{reflist|colwidth=30em}}
 
== References ==
*{{Citation
  | last = Acheson
  | first = D. J.
  | title = Elementary Fluid Dynamics
  | publisher = [[Oxford University Press]]
  | series = Oxford Applied Mathematics and Computing Science Series
  | year = 1990
  | isbn = 0-19-859679-0 }}
*{{citation | first=G. K. | last=Batchelor | authorlink=George Batchelor | title=An Introduction to Fluid Dynamics | year=1967 | publisher=Cambridge University Press | isbn=0-521-66396-2 }}
*{{citation | title=Fluid mechanics | first1=L. D. | last1=Landau | author1-link=Lev Landau | author2-link=Evgeny Lifshitz | last2=Lifshitz | first2= E. M. | year=1987 | publisher=Pergamon Press | series=[[Course of Theoretical Physics]] | volume=6 | edition=2nd revised | isbn=0-08-033932-8 | oclc=15017127 }}
*{{citation | first=Inge L. | last=Rhyming | title=Dynamique des fluides | year=1991 | publisher=[[Presses polytechniques et universitaires romandes]]}}
*{{citation | first1=A. D. | last1=Polyanin | first2=A. M. | last2=Kutepov | first3=A. V. | last3=Vyazmin | first4=D. A. | last4=Kazenin | title=Hydrodynamics, Mass and Heat Transfer in Chemical Engineering | publisher=Taylor & Francis, London | year=2002 | isbn=0-415-27237-8 }}
*{{Citation
  | last = Currie
  | first = I. G.
  | title = Fundamental Mechanics of Fluids
  | publisher = [[McGraw-Hill]]
  | year = 1974
  | isbn = 0-07-015000-1 }}
 
== External links ==
* [http://www.allstar.fiu.edu/aero/Flow2.htm Simplified derivation of the Navier–Stokes equations]
* [http://www.claymath.org/millennium/Navier-Stokes_Equations/navierstokes.pdf Millennium Prize problem description.]
* [http://www.cfd-online.com/Wiki/Codes CFD online software list] A compilation of codes, including Navier–Stokes solvers.
* [http://nerget.com/fluidSim/ Online fluid dynamics simulator] Solves the Navier-Stokes equation and visualizes it using Javascript.
 
{{DEFAULTSORT:Navier-Stokes Equations}}
[[Category:Concepts in physics]]
[[Category:Equations of fluid dynamics]]
[[Category:Aerodynamics]]
[[Category:Partial differential equations]]
[[Category:Conservation equations]]

Revision as of 21:16, 17 February 2014

Potrebbe sembrare un progetto difficile Abercrombie Online

Può essere molto comune al momento di ottenere un latte intero di grasso in eccesso, il vostro viaggio di lavoro. Non esaminare se stessi all'interno della partita. Rendere i capelli dalla faccia in modo che si può aiutare la prevenzione di olio essenziale di sviluppo fino alla vostra pelle del viso.

Cercate di trattare il vostro sistema con l'aggiunta di cura adeguata e non esercitare se stessi. " onmouseover="this.style.backgroundColor='#ebeff9'" onmouseout="this.style.backgroundColor='#fff'">Utilizzando un'altra cosa potrebbe riposto la vostra salute generale a rischio..

Questa erba naturale ha sia antibatterica e qualità anti-fungini. Per ottenere un cane contento, è importante iniziare socializzare fin dalla tenera invecchiano. Per risparmiare denaro sulla polizza di assicurazione del proprietario di abitazione pensare le spese di progetti di costruzione, prima di iniziare a sviluppare.

Potrebbe sembrare un progetto difficile, ma se si possiedono le conoscenze necessarie per eseguire il backup scelte, può rendere più semplice. Se si scopre che si potrebbe avere problemi a spendere troppi soldi, provare a utilizzare denaro ogni volta che andate d'acquisto.

Accertarsi Abercrombie Online che non avete dolci sdraiati intorno alla posizione della vostra casa. Esso può essere appagante a prendere questo generare con altre persone, o forse si vuole accettare di auto da soli. Questi elementi contengono acidi e quindi sono più difficili per il vostro corpo di assorbire.

Prestare attenzione ai cibi che sono l'ideale per voi quando si combatte i sintomi despression. " onmouseover="this.style.backgroundColor='#ebeff9'" onmouseout="this.style.backgroundColor='#fff'">Questo può diffondere la luce, generando per il dolce, l'illuminazione naturale nelle fotografie..

Prendere attentamente in considerazione Nike Factory Store individui carte di credito che forniscono un interesse pari a zero per cento. Avere un cucciolo propriamente educati è un buon piacere che può Nike Free Baratas solo essere raggiunto per mezzo di una corretta coaching. Essere bene con Polo Fred Perry pavimento in centro, a volte e tenere a mente, se il tuo datore di lavoro è soddisfatto con il lavoro ma si sta comunque doversi preoccupare di questo, è più probabile impostando i tuoi criteri eccessivo.

Esso fornisce un sacco di tattiche e merci che richiedono una visione entusiasta, precisioni nonché un'attenzione tagliente di profondità. " onmouseover="this.style.backgroundColor='#ebeff9'" onmouseout="this.style.backgroundColor='#fff'">Smettere di fumare può ricaricare tutto il tuo corpo e migliorare la vostra visione totale dell'esistenza..

Per aiutare a controllare il nervosismo Nike Cortez

Devi essere inalare il più pulito flusso d'aria probabile, per tutto il tempo.. Speriamo che troverete i seguenti consigli vantaggiosa. " onmouseover="this.style.backgroundColor='#ebeff9'" onmouseout="this.style.backgroundColor='#fff'">Le informazioni e suggerimenti in questo articolo vi aiuterà a utilizzare e-mail marketing per portare nuova vita quotidiana alla società..

Per aiutare a controllare il nervosismo, la ricerca per gli articoli o le persone che a farti ridere di più. Uno dei migliori temi che si possono fare in modo che è possibile ridurre la probabilità di incontrare acne è quello di mangiare cibi che viene caricato con zinco.

Richiedi dettagli accreditamento. Debito può palla di neve a te, ma nessuno vi porterà in un buco economico su prestiti online payday. Non è una grande idea per analizzare con il vostro dormitorio. Quando si utilizzano piante o abbondante soggetto normale materia al di fuori, tentare di prendere in considerazione le tue foto su un giorno nuvoloso.

Sfruttate al massimo usando il messaggio di testo, o sms, per collegare insieme con i vostri clienti utilizzano i telefoni cellulari. Se si sceglie di usare pesticidi per rimuovere insetti, assicuratevi di scegliere un pesticida modificato per lo scenario.

Pagare per il più basso su altre carte di credito, se questo indica che si è in grado di pagare questi debiti via più rapida. Un suggerimento utile in relazione al golf sta per essere tranquillo quando gli altri giocatori stanno colpendo la palla da tennis.

Che vi aiuterà a smettere di russare si dovrebbe considerare cadere qualche peso. Questo probabilmente controllare il vostro dolore sia in grado di ridurre i dolori e dolori quando vivace. Scopri cosa pasti che non dovrebbe Nike Cortez essere avere, e regolare la vostra dieta quotidiana di conseguenza.

Queste piastrine dei livelli di colesterolo può a poco a poco aumento e infine bloccare i passaggi. Inalatori insulina dovrebbero essere disponibili a breve. Il vostro avvocato o procuratore sta lavorando non solo sul tuo caso. Apnea ostruttiva del sonno spesso può essere causato Vibram España da russare rumorosamente.

È possibile esaminare con questo utilizzando i robot che sono in giro. Un sacco di vostre piantine deve essere Nike Tacon España tracciato nuovamente in un contenitore più grande prima di decidere di metterli nel vostro cortile. A volte le strategie classiche ed economiche per la gestione di porte d'ingresso cigolante Hollister Tiendas può essere giusto per voi.

Dopo aver letto questo articolo, è necessario avere idee nuove e benefiche su come gestire e conquistare i sintomi di allergia. Sono le vostre frasi termine di ricerca alloggiare nei titoli di link spiegate. Stai andando avere bisogno di effettuare un deposito su di essa e portare un pagamento al mese come si farebbe con una normale carta di credito.