|
|
Line 1: |
Line 1: |
| {{tone|date=February 2013}}
| | Leather Goods Maker Newton from Markham, has many passions including kites, health and fitness and treasure hunting. Has toured since childhood and has traveled to many destinations, for example Historic Monuments of Novgorod and Surroundings.<br><br>Here is my blog post: [https://dev.pvv.org/projects/pvv-dev/ticket/24746 best weight gainer reviews uk] |
| {{about|waveguides in the most general sense|ordinary metal-pipe waveguides|Waveguide (electromagnetism)|optical waveguides|Waveguide (optics)}}
| |
| | |
| [[File:WaveguideJ-Band.png|thumb|A section of flexible waveguide with a [[waveguide flange|pressurizable flange]]]]
| |
| [[File:Waveguide x EM rect TE31.gif|thumb|right|alt=(animation) Electric field inside an x-band hollow metal waveguide. A cross-section of the waveguide allows a view of the field inside.|Electric field inside an x-band hollow metal waveguide.]]
| |
| A '''waveguide''' is a structure that guides waves, such as [[electromagnetic wave]]s or [[sound]] waves. There are different types of waveguides for each type of wave. The original and most common<ref name="IEEEdict1997">Institute of Electrical and Electronics Engineers, “The IEEE standard dictionary of electrical and electronics terms”; 6th ed. New York, N.Y., Institute of Electrical and Electronics Engineers, c1997. IEEE Std 100-1996. ISBN 1-55937-833-6 [ed. Standards Coordinating Committee 10, Terms and Definitions; Jane Radatz, (chair)]</ref> meaning is a hollow conductive metal pipe used to carry high frequency [[radio wave]]s, particularly [[microwave]]s.
| |
| | |
| The geometry of a waveguide reflects its function. Slab waveguides confine energy to travel only in one dimension, fiber or channel waveguides for two dimensions. The frequency of the transmitted wave also dictates the shape of a waveguide: an [[optical fiber]] guiding high-[[frequency]] [[light]] will not guide [[microwaves]] of a much lower frequency. As a [[rule of thumb]], the width of a waveguide needs to be of the same [[order of magnitude]] as the [[wavelength]] of the guided wave.
| |
| | |
| Some naturally occurring structures can also act as waveguides. The [[SOFAR channel]] layer in the ocean can guide the sound of [[whale sound|whale song]] across enormous distances.<ref>[http://www3.interscience.wiley.com/journal/119693602/abstract ORIENTATION BY MEANS OF LONG RANGE ACOUSTIC SIGNALING IN BALEEN WHALES], R. Payne, D. Webb, in Annals NY Acad. Sci., '''188''':110-41 (1971)</ref>
| |
| | |
| ==Principle of operation==
| |
| [[Image:Diplexer1.jpg|thumb|Example of waveguides and a [[diplexer]] in an air traffic control radar]]
| |
| | |
| Waves in open space propagate in all directions, as [[spherical wave]]s. In this way they lose their power proportionally to the square of the distance([[inverse square law]]); that is, at a distance ''R'' from the source, the power is the source power divided by ''R''<sup>2</sup>. The waveguide confines the wave to propagate in one dimension, so that (under ideal conditions) the wave loses no power while propagating. Conductors used in waveguides have small skin depth and hence large surface resistance.
| |
| | |
| Waves are confined inside the waveguide due to total [[Reflection (physics)|reflection]] from the waveguide wall, so that the propagation inside the waveguide can be described approximately as a "zigzag" between the walls. This description is exact for electromagnetic waves in a hollow metal tube with a rectangular or circular cross-section.
| |
| | |
| ==History==
| |
| The first structure for guiding waves was proposed by [[J. J. Thomson]] in 1893, and was first experimentally tested by [[Oliver Lodge]] in 1894. The first mathematical analysis of electromagnetic waves in a metal cylinder was performed by [[John Strutt, 3rd Baron Rayleigh|Lord Rayleigh]] in 1897.<ref>N. W. McLachlan, Theory and Applications of Mathieu Functions, p. 8 (1947) (reprinted by Dover: New York, 1964).</ref>
| |
| For sound waves, Lord Rayleigh published a full mathematical analysis of [[propagation mode]]s in his seminal work, “The Theory of Sound”.<ref name="rayleigh">[http://books.google.com/books?id=zTYIAAAAIAAJ The Theory of Sound], by J. W. S. Rayleigh, (1894)</ref>
| |
| | |
| The study of dielectric waveguides (such as optical fibers, see below) began as early as the 1920s, by several people, most famous of which are Rayleigh, [[Arnold Sommerfeld|Sommerfeld]] and [[Peter Debye|Debye]].<ref name="balanis">[http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0471621943.html Advanced Engineering Electromagnetics], by C. A. Balanis, John Wiley & Sons (1989).</ref>
| |
| Optical fiber began to receive special attention in the 1960s due to its importance to the communications industry.
| |
| | |
| ==Uses==
| |
| [[File:Waveguide.aps.anl.gov.jpg|thumb|Waveguide supplying power for the [[Argonne National Laboratory]] [[Advanced Photon Source]].]]
| |
| The uses of waveguides for transmitting signals were known even before the term was coined. The phenomenon of sound waves guided through a taut wire have been known for a long time, as well as sound through a hollow pipe such as a [[cave]] or medical [[stethoscope]]. Other uses of waveguides are in transmitting power between the components of a system such as radio, radar or optical devices. Waveguides are the fundamental principle of [[guided wave testing]] (GWT), one of the many methods of [[Nondestructive testing|non-destructive evaluation]].
| |
| | |
| Specific examples:
| |
| * Optical fibers transmit light and signals for long distances and with a high signal rate.
| |
| * In a [[microwave oven]] a waveguide transfers power from the [[magnetron]], where waves are formed, to the cooking chamber.
| |
| * In a radar, a waveguide transfers radio frequency energy to and from the antenna, where the [[Electrical impedance|impedance]] needs to be matched for efficient power transmission (see below).
| |
| * A waveguide called a [[stripline]] can be created on a [[printed circuit board]], and is used to transmit microwave signals on the board. This type of waveguide is very cheap to manufacture and has small dimensions which fit inside printed circuit boards.
| |
| * Waveguides are used in scientific instruments to measure optical, acoustic and elastic properties of materials and objects. The waveguide can be put in contact with the specimen (as in a [[medical ultrasonography]]), in which case the waveguide ensures that the power of the testing wave is conserved, or the specimen may be put inside the waveguide (as in a dielectric constant measurement<ref>J. R. Baker-Jarvis, "Transmission / reflection and short-circuit line permittivity measurements", NIST tech. note 1341, July 1990</ref>), so that smaller objects can be tested and the accuracy is better.
| |
| | |
| ==A sketch of the theoretical analysis==
| |
| {{disputed-section|date=January 2010}}
| |
| [[Electromagnetic wave]] propagation along the axis of the waveguide is described by the [[wave equation]], which is derived from [[Maxwell's equations]], and where the [[wavelength]] depends upon the structure of the waveguide, and the material within it (air, plastic, vacuum, etc.), as well as on the [[frequency]] of the wave.
| |
| | |
| The spatial distribution of the time-varying [[electric field]]s and [[magnetic field]]s within the waveguide depends on [[boundary condition]]s imposed by the shape and materials of the waveguide. Let us assume that the waveguide is made of a metal that is such a good [[conductor (electricity)|conductor]] that we can consider it to be a perfect conductor. Nearly all waveguides have copper interiors, but some of them are even plated with [[silver]] or [[gold]] on the inside - excellent conductors, and also resistant to corrosion. Now, the boundary conditions are these:
| |
| * Electromagnetic waves do not pass through conductors, but rather, they are reflected.
| |
| * Any electric field that touches a conductor must be perpendicular to it.
| |
| * Any magnetic field close to a conductor must be parallel to it.
| |
| | |
| These boundary conditions eliminate an infinite number of solutions to the wave equation, and the ones that remain are the possible solutions to the wave equation inside the waveguide. The rest of the analysis of the solutions of the electromagnetic waves inside a waveguide gets very mathematical. It can be noted that all solutions are such that either the electric or magnetic
| |
| field vector must have a component parallel to the axis, in contrast to propagation in a multi-conductor line that can have all its field components in the plane of the cross-section.
| |
| | |
| All that remains that can be said without getting very mathematical is that commonly used waveguides are only of a few categories. The most common kind of waveguide is one that has a rectangular cross-section, one that is usually not square. It is common for the long side of this cross-section to be twice as long as its short side. These are useful for carrying electromagnetic waves that have a horizontal or vertical [[Polarization (waves)|polarization]] to them.
| |
| | |
| The second most commonly used kind of waveguide has a circular cross-section. These turn out to be quite useful when carrying electromagnetic waves with a rotating, [[circular polarization]] to them. Then, its electrical field traces out a [[helical]] pattern as a function of time.
| |
| | |
| The third kind of a waveguide - actually a seldom-used one - has an elliptical cross-section.
| |
| | |
| ===Propagation modes and cutoff frequencies===
| |
| {{disputed-section|date=January 2010}}
| |
| A [[propagation mode]] in a waveguide is one solution of the wave equations, or, in other words, the form of the wave.<ref name="balanis" /> Due to the constraints of the [[boundary conditions]], there are only limited frequencies and forms for the wave function which can propagate in the waveguide. The lowest frequency in which a certain mode can propagate is the [[cutoff frequency]] of that mode. The mode with the lowest cutoff frequency is the basic mode of the waveguide, and its cutoff frequency is the waveguide cutoff frequency.
| |
| | |
| ===Impedance matching===
| |
| {{disputed-section|date=January 2010}}
| |
| In [[circuit theory]], the [[Electrical impedance|impedance]] is a generalization of [[electrical resistivity]] in the case of [[alternating current]], and is measured in [[ohm]]s (<math>\Omega</math>).<ref name="balanis" />
| |
| A waveguide in circuit theory is described by a [[transmission line]] having a length and self impedance. In other words the impedance is the resistance of the circuit component (in this case a waveguide) to the propagation of the wave. This description of the waveguide was originally intended for alternating current, but is also suitable for electromagnetic and sound waves, once the wave and material properties (such as [[pressure]], [[density]], [[dielectric constant]]) are properly converted into electrical terms ([[Electric current|current]] and impedance for example).
| |
| | |
| Impedance matching is important when components of an electric circuit are connected (waveguide to antenna for example): The impedance ratio determines how much of the wave is transmitted forward and how much is reflected. In connecting a waveguide to an antenna a complete transmission is usually required, so that their impedances are matched.
| |
| | |
| The reflection coefficient can be calculated using: <math>\Gamma=\frac{Z_2/Z_1-1}{Z_2/Z_1+1}</math>, where <math>\Gamma</math> is the reflection coefficient (0 denotes full transmission, 1 full reflection, and 0.5 is a reflection of half the incoming voltage), <math>Z_1</math> and <math>Z_2</math> are the impedance of the first component (from which the wave enters) and the second component, respectively.
| |
| | |
| An impedance mismatch creates a reflected wave, which added to the incoming waves creates a standing wave. An impedance mismatch can be also quantified with the [[standing wave ratio]] (SWR or VSWR for voltage), which is connected to the impedance ratio and reflection coefficient by: <math>VSWR=\frac{|V|_{max}}{|V|_{min}}=\frac{1+|\Gamma|}{1-|\Gamma|}</math>, where <math>\left|V\right|_{min, max}</math> are the minimum and maximum values of the voltage [[absolute value]], and the VSWR is the voltage standing wave ratio, which value of 1 denotes full transmission, without reflection and thus no standing wave, while very large values mean high reflection and standing wave pattern.
| |
| | |
| == Electromagnetic waveguides ==
| |
| {{Main|Waveguide (electromagnetism)|transmission line}}
| |
| Waveguides can be constructed to carry waves over a wide portion of the [[electromagnetic spectrum]], but are especially useful in the [[microwave]] and [[optics|optical]] frequency ranges. Depending on the frequency, they can be constructed from either [[Electrical conduction|conductive]] or [[dielectric]] materials. Waveguides are used for transferring both [[power (physics)|power]] and communication signals.
| |
| | |
| == Optical waveguides ==
| |
| {{Main|Waveguide (optics)}}
| |
| Waveguides used at optical frequencies are typically dielectric waveguides, structures in which a [[dielectric]] material with high [[permittivity]], and thus high [[index of refraction]], is surrounded by a material with lower permittivity. The structure guides optical waves by [[total internal reflection]]. An example of an optical waveguide is '''[[optical fiber]]'''.
| |
| | |
| Other types of optical waveguide are also used, including [[photonic-crystal fiber]], which guides waves by any of several distinct mechanisms. Guides in the form of a hollow tube with a highly reflective inner surface have also been used as [[light pipe]]s for illumination applications. The inner surfaces may be polished metal, or may be covered with a multilayer film that guides light by [[Bragg reflection]] (this is a special case of a photonic-crystal fiber). One can also use small [[prism (optics)|prism]]s around the pipe which reflect light via total internal reflection [http://www.physics.ubc.ca/ssp/research/lightpipe.htm]—such confinement is necessarily imperfect, however, since total internal reflection can never truly guide light within a ''lower''-index core (in the prism case, some light leaks out at the prism corners).
| |
| | |
| == Acoustic waveguides ==
| |
| {{Main|Waveguide (acoustics)}}
| |
| | |
| An ''acoustic waveguide'' is a physical structure for guiding sound waves. A duct for sound propagation also behaves like a [[transmission line]]. The duct contains some medium, such as air, that supports sound propagation.
| |
| | |
| == Sound synthesis ==
| |
| {{Main|Digital waveguide synthesis}}
| |
| | |
| Sound synthesis uses [[digital delay line]]s as computational elements to simulate [[wave propagation]] in tubes of [[wind instruments]] and the [[vibrating strings]] of [[string instruments]].
| |
| | |
| == See also==
| |
| *[[Circular polarization]]
| |
| *[[Electromagnetic wave]]
| |
| *[[Linear polarization]]
| |
| *[[Orthomode transducer]]
| |
| *[[Polarization (waves)|Polarization]]
| |
| | |
| ==References==
| |
| <references/>
| |
| | |
| ==External links==
| |
| {{Wiktionary|waveguide}}
| |
| {{Commons category|Waveguides}}
| |
| *[http://miwv.com/millimeter-wave-resources/what-is-a-waveguide Waveguide] A very basic explanation on what is a waveguide
| |
| *[http://www.radio-electronics.com/info/antennas/waveguide/waveguide-basics-tutorial.php Waveguide basics] Multiple pages giving detailed tutorial
| |
| *[http://www.ece.rutgers.edu/~orfanidi/ewa/ch09.pdf Electromagnetic Waves and Antennas: Waveguides] Sophocles J. Orfanidis, Department of Electrical and Computer Engineering, Rutgers University
| |
| | |
| [[Category:Applied and interdisciplinary physics]]
| |
| [[Category:Electrical components]]
| |
| [[Category:Telecommunications equipment]]
| |
| [[Category:British inventions]]
| |
| | |
| [[af:Golfleier]]
| |
| [[ca:Guia d'ones]]
| |
| [[de:Wellenleiter]]
| |
| [[es:Guía de onda]]
| |
| [[fr:Guide d'onde]]
| |
| [[he:גלבו]]
| |
| [[sv:Vågledare]]
| |
| [[ta:அலைநடத்தி]]
| |
| [[ur:قائد الموج]]
| |