|
|
Line 1: |
Line 1: |
| [[Image:Gaussian beam w40mm lambda30mm.png|thumb|right|Instantaneous intensity of a Gaussian beam.]]
| | == Canada Goose Parka Outlet joissa on hutera näkökulmasta == |
| [[Image:Green laser pointer TEM00 profile.JPG|thumb|right|A 5 mW green laser pointer beam profile, showing the TEM<sub>00</sub> profile]]
| |
| In [[optics]], a '''Gaussian beam''' is a [[Light beam|beam]] of [[electromagnetic radiation]] whose transverse [[electric field]] and [[irradiance|intensity]] (irradiance) distributions are well approximated by [[Gaussian function]]s. Many [[laser]]s emit beams that approximate a Gaussian profile, in which case the laser is said to be operating on the ''fundamental [[transverse mode]]'', or "TEM<sub>00</sub> mode" of the laser's [[optical resonator]]. When [[refraction|refracted]] by a [[Diffraction-limited system|diffraction-limited]] [[lens (optics)|lens]], a Gaussian beam is transformed into another Gaussian beam (characterized by a different set of parameters), which explains why it is a convenient, widespread [[mathematical models in physics|model]] in laser optics.
| |
|
| |
|
| The mathematical function that describes the Gaussian beam is a solution to the [[paraxial approximation|paraxial]] form of the [[Helmholtz equation#Paraxial approximation|Helmholtz equation]]. The solution, in the form of a Gaussian function, represents the [[complex number|complex]] amplitude of the beam's [[electric field]]. The electric field and [[magnetic field]] together propagate as an [[electromagnetic wave]]. A description of just one of the two fields is sufficient to describe the properties of the beam.
| | Kuitenkin, jos et halua aloittaa aivan kanssa potta koulutus sen tärkeää muistaa, että ne voivat käyttää ja juosta karkuun ja piiloutua, jos pelottaa. Koiranpentu on ehkä siirretty noin useita kertoja viime päivinä ja ei tiedä sen nimeä vielä tai kuka olet. Peloissaan tai sekoittaa lemmikkisi yrittää piilottaa, eikä aina tehdä hyviä valintoja ja jossa he ovat menossa. <br><br>'Sillä Nosferatu, Olin alunperin menossa valita melko moderni, kulmikas musiikkia samaan aikaan ajatus Saksan ekspressionismi, mutta koska elokuva on ammuttu naturalistinen paikoissa, toisin kuin outoa, joissa on hutera näkökulmasta, käännyin kohti tumma romantiikan Brahms, joka toimii yllättävän hyvin. [http://www.iandlonline.com/services/miumiu/awards.asp?h=15-Canada-Goose-Parka-Outlet Canada Goose Parka Outlet] 'Romanian Folk Dances että Linnebach suorittaa, Reeves sanoo, tarjoaa' siisti muutos puhtaasti kuoromusiikin tai urkumusiikin ja antaa elokuva sopiva Balkanin tuntuu, ansaitsee Transilvanian count. 'jälkeen elokuva seulonnat, kuoron muita konsertteja tällä [http://www.showgear.com.my/forum/test.asp?p=19-Mbt-Outlet-Italia Mbt Outlet Italia] kaudella muun muassa 21 helmikuu suorituskyky, joka tarjoaa musiikkia Palestrina, Morley ym. <br><br>'Maamme on horjunut riitaa, mutta vain harvat olivat tilivelvollisia, että meidän elinaikanamme', sanoi avustaja, Georgi Poltavtshenko. 'En usko, että on oikeudenmukaista, että ne, jotka aloitti riitaa pysyvät keskellä meidän valtion lähellä Kremlin.' Vuonna loputon keskustelu siitä, mitä tarkalleen Uusi Venäjä on aiheena Lenin muistuttaa Rorschach inkblot testi. Ihmiset projekti näkemyksensä heidän valtionsa hänen päälleen ja katso, mitä he haluavat. <br><br>Meidän verojärjestelmä on sellainen, että Mitt Romney voi lahjoittaa lähes miljoona dollaria varastossa hänen oma henkilökohtainen säätiö, käyttää rahaa mihin tarkoitukseen tahansa hän haluaa, ja se kaikki melko mielestäni täysin epäeettistä, mutta vain henkilökohtainen mielipide. Minun todellinen huoli ei ole mitä tehdään, vaan mitä isn tehnyt. Epätodennäköisenä Romney osti edellä luetelluista varastossa 921,000 dollaria niin mitä tapahtuu myyntivoittoja tämän kannan?. <br><br>Viime kerralla ulos Gleneaglesissa pelasin kaunis, ja olisi helposti voinut tehdä pelata pois. Se on hieno välillä näytelmän pois ja ehkä voittaa ja kymmenes paikka. Minun täytyy vain tämän vajeen korjaamiseksi jakeen ja Otan mahdollisuus lähettämistä toisen voitto.. <br><br>Street hän said.The yliopisto on tarkasteltava kaikkia vaihtoehtoja rahoittamaan uusien rakennusten tulevaisuudessa, hän sanoi 'se on vain osa due diligence. '' Meidän täytyy olla luova ', hän said.In ehdotuksen kehotusta Michener kunnostaminen, yliopiston nimenomaan pyysi suunnitelma rakentaa uusi, suurempi opiskelijoiden oleskelua ja vielä joitakin jätetyn maan mahdollisia leasing, Lim added.Construction Uusien asuntojen [http://www.propertytalk.com.my/penang/Image/header.asp?b=97-Ray-Ban-New-Wayfarer-Aurinkolasit Ray Ban New Wayfarer Aurinkolasit] alkaisi vapautunut maa vieressä 51. [http://www.gmmi-texchem.com/marketingshare/Ambu/aboutus.asp?id=83-Longchamp-Laukku-Mallit Longchamp Laukku Mallit] Avenue, ja hanke olisi vaiheittain niin, että jotkut majoitusta naimisissa opiskelijoille olisi aina saatavilla, hän lisäsi.. |
| | | 相关的主题文章: |
| The behavior of the field of a Gaussian beam as it propagates is described by a few parameters such as the spot size, the radius of curvature, and the Gouy phase.<ref name="svelto153">Svelto, pp. 153–5.</ref>
| | <ul> |
| | | |
| Other solutions to the paraxial form of the Helmholtz equation exist. Solving the equation in Cartesian coordinates leads to a family of solutions known as the Hermite–Gaussian modes, while solving the equation in cylindrical coordinates leads to the Laguerre–Gaussian modes.<ref name="siegman642">Siegman, p. 642.</ref><ref name="goubau">probably first considered by Goubau and Schwering (1961).</ref> For both families, the lowest-order solution describes a Gaussian beam, while higher-order solutions describe higher-order transverse modes in an optical resonator.
| | <li>[http://www.tc139.cn/news/html/?214241.html http://www.tc139.cn/news/html/?214241.html]</li> |
| [[Image:Laser gaussian profile.svg|thumb|right|The top portion of the diagram shows the two-dimensional intensity profile of a Gaussian beam that is propagating out of the page. The blue curve, below, is a plot of the electric field amplitude as a function of distance from the center of the beam. The black curve is the corresponding intensity function.]]
| | |
| | | <li>[http://www.ticketlodge.com/ticket-lodge-blog/14-06-17/Jesse_McCartney_In_Technicolor_Tour.aspx/ http://www.ticketlodge.com/ticket-lodge-blog/14-06-17/Jesse_McCartney_In_Technicolor_Tour.aspx/]</li> |
| ==Mathematical form==
| | |
| The Gaussian beam is a [[transverse electromagnetic mode|transverse electromagnetic (TEM) mode]].<ref name="svelto158">Svelto, p. 158.</ref> A mathematical expression for its complex electric field amplitude can be found by solving the paraxial Helmholtz equation, yielding<ref name="svelto153" />
| | <li>[http://www.film-video-dvd-production.com/spip.php?article6/ http://www.film-video-dvd-production.com/spip.php?article6/]</li> |
| | | |
| :<math>E(r,z) = E_0 \frac{w_0}{w(z)} \exp \left( \frac{-r^2}{w(z)^2} -ikz -ik \frac{r^2}{2R(z)} +i \zeta(z) \right)\ , </math>
| | <li>[http://www.winnerwayx.com/forum.php?mod=viewthread&tid=2020 http://www.winnerwayx.com/forum.php?mod=viewthread&tid=2020]</li> |
| | | |
| where<ref name="svelto153" />
| | <li>[http://www.vozesdaeducacao.org.br/bbpress/profile.php?id=472089 http://www.vozesdaeducacao.org.br/bbpress/profile.php?id=472089]</li> |
| :<math>r</math> is the radial distance from the center axis of the beam,
| | |
| :<math>z</math> is the axial distance from the beam's narrowest point (the "waist"),
| | </ul> |
| :<math>i</math> is the [[imaginary unit]] (for which <math>i^2 = -1</math>),
| |
| :<math> k = 2 \pi/\lambda</math> is the [[wave number]] (in [[radian]]s per meter),
| |
| :<math>E_0 = |E(0,0)|</math>,
| |
| :<math>w(z)</math> is the radius at which the field amplitude and intensity drop to 1/''e'' and 1/''e''<sup>2</sup> of their axial values, respectively,
| |
| :<math>w_0 = w(0)</math> is the [[#Beam width or spot size|waist size]],
| |
| :<math>R(z)</math> is the [[#Radius of curvature|radius of curvature]] of the beam's wavefronts, and
| |
| :<math>\zeta(z)</math> is the [[#Gouy phase|Gouy phase shift]], an extra contribution to the phase that is seen in Gaussian beams.
| |
| Additionally, the field has a time dependence factor <math>e^{i\omega t}</math> that has been suppressed in the above expression.
| |
| | |
| The corresponding time-averaged [[intensity (physics)|intensity]] (or [[irradiance]]) distribution is
| |
| | |
| :<math>I(r,z) = { |E(r,z)|^2 \over 2 \eta } = I_0 \left( \frac{w_0}{w(z)} \right)^2 \exp \left( \frac{-2r^2}{w^2(z)} \right)\ , </math> | |
| | |
| where <math>I_0 = I(0,0)</math> is the intensity at the center of the beam at its waist. The constant <math>\eta \,</math> is the [[Wave impedance|characteristic impedance]] of the medium in which the beam is propagating. For free space, <math> \eta = \eta_0 = \sqrt{\mu_0/\varepsilon_0} = 1/(\varepsilon_0 c) \approx 376.7 \ \Omega</math>.
| |
| | |
| == Beam parameters == | |
| | |
| The geometry and behavior of a Gaussian beam are governed by a set of '''beam parameters''', which are defined in the following sections.
| |
| | |
| ===Beam width or spot size===<!--Beam waist redirects here-->
| |
| {{see also|Beam diameter}}
| |
| [[Image:GaussianBeamWaist.svg|thumb|350px|right|Gaussian beam width ''w''(''z'') as a function of the axial distance ''z''. ''w''<sub>0</sub>: beam waist; ''b'': depth of focus; ''z''<sub>R</sub>: [[Rayleigh range]]; <math>\Theta</math>: total angular spread]]
| |
| | |
| For a Gaussian beam propagating in free space, the spot size (radius) ''w''(''z'') will be at a minimum value ''w''<sub>0</sub> at one place along the beam axis, known as the ''beam waist''. For a beam of [[wavelength]] λ at a distance ''z'' along the beam from the beam waist, the variation of the spot size is given by<ref name="svelto153" />
| |
| | |
| :<math>w(z) = w_0 \, \sqrt{ 1+ {\left( \frac{z}{z_\mathrm{R}} \right)}^2 } \ . </math>
| |
| | |
| where the origin of the z-axis is defined, without loss of generality, to coincide with the beam waist, and where<ref name="svelto153" />
| |
| | |
| :<math>z_\mathrm{R} = \frac{\pi w_0^2}{\lambda}</math>
| |
| | |
| is called the [[Rayleigh range]].
| |
| | |
| ===Rayleigh range and confocal parameter===
| |
| At a distance from the waist equal to the Rayleigh range ''z''<sub>R</sub>, the width ''w'' of the beam is<ref name="svelto153" />
| |
| | |
| :<math> w(\pm z_\mathrm{R}) = \sqrt{2} w_0.</math>
| |
| | |
| The distance between these two points is called the ''confocal parameter'' or ''depth of focus'' of the beam:
| |
| | |
| :<math>b = 2 z_\mathrm{R} = \frac{2 \pi w_0^2}{\lambda}\,.</math>
| |
| | |
| === Radius of curvature ===
| |
| | |
| ''R''(''z'') is the ''[[Radius of curvature (optics)|radius of curvature]]'' of the wavefronts comprising the beam. Its value as a function of position is<ref name="svelto153" />
| |
| | |
| :<math>R(z) = z \left[{ 1+ {\left( \frac{z_\mathrm{R}}{z} \right)}^2 } \right] \ . </math>
| |
| | |
| ===Beam divergence===
| |
| The parameter <math>w(z)</math> increases linearly with <math>z</math> for <math>z \gg z_\mathrm{R}</math>. This means that far from the waist, the beam is cone-shaped. The angle between the straight line <math>r=w(z)</math> and the central axis of the beam (<math>r=0</math>) is called the ''divergence'' of the beam. It is given by<ref name="svelto153" />
| |
| | |
| :<math>\theta \simeq \frac{\lambda}{\pi w_0} \qquad (\theta \mathrm{\ in\ radians}). </math>
| |
| | |
| The total angular spread of the beam far from the waist is then given by
| |
| :<math>\Theta = 2 \theta\ .</math>
| |
| | |
| Because the divergence is inversely proportional to the spot size, a Gaussian beam that is focused to a small spot spreads out rapidly as it propagates away from that spot. To keep a laser beam very well [[Collimated light|collimated]], it must have a large diameter. This relationship between beam width and divergence is due to [[diffraction]]. Non-Gaussian beams also exhibit this effect, but a Gaussian beam is a special case where the product of width and divergence is the smallest possible.
| |
| | |
| Since the gaussian beam model uses the paraxial approximation, it fails when wavefronts are tilted by more than about 30° from the direction of propagation.<ref>Siegman (1986) p. 630.</ref> From the above expression for divergence, this means the Gaussian beam model is valid only for beams with waists larger than about <math>2\lambda/\pi</math>.
| |
| | |
| [[Laser beam quality]] is quantified by the [[beam parameter product]] (BPP). For a Gaussian beam, the BPP is the product of the beam's divergence and waist size <math>w_0</math>. The BPP of a real beam is obtained by measuring the beam's minimum diameter and far-field divergence, and taking their product. The ratio of the BPP of the real beam to that of an ideal Gaussian beam at the same wavelength is known as ''M''<sup>2</sup> ("[[M squared]]"). The ''M''<sup>2</sup> for a Gaussian beam is one. All real laser beams have ''M''<sup>2</sup> values greater than one, although very high quality beams can have values very close to one.
| |
| | |
| ===Gouy phase===
| |
| The ''longitudinal phase delay'' or ''Gouy phase'' of the beam is<ref name="svelto153" />
| |
| | |
| :<math>\zeta(z) = \arctan \left( \frac{z}{z_\mathrm{R}} \right) \ .</math>
| |
| | |
| The Gouy phase indicates that as a Gaussian beam passes through a focus, it acquires an additional phase shift of π, in addition to the usual <math>e^{-ikz}</math> phase shift that would be expected from a plane wave.<ref name="svelto153" />
| |
| | |
| ===Complex beam parameter===
| |
| {{main|Complex beam parameter}}
| |
| Information about the spot size and radius of curvature of a Gaussian beam can be encoded in the complex beam parameter, <math>q(z)</math>:<ref name="siegman638">Siegman, pp. 638–40.</ref>
| |
| | |
| :<math> q(z) = z + q_0 = z + iz_\mathrm{R} \ .</math>
| |
| | |
| The reciprocal <math>1/q(z)</math> shows the relationship between <math>q(z)</math>, <math>w(z)</math>, and <math>R(z)</math> explicitly:<ref name="siegman638" />
| |
| | |
| :<math> { 1 \over q(z) } = { 1 \over z + iz_\mathrm{R} } = { z \over z^2 + z_\mathrm{R}^2 } - i { z_\mathrm{R} \over z^2 + z_\mathrm{R}^2 } = {1 \over R(z) } - i { \lambda \over \pi w^2(z) }.</math>
| |
| | |
| The complex beam parameter plays a key role in the analysis of Gaussian beam propagation, and especially in the analysis of [[optical cavity|optical resonator cavities]] using [[ray transfer matrix analysis|ray transfer matrices]].
| |
| | |
| In terms of the complex beam parameter <math>{q}</math>, a Gaussian field with one transverse dimension is proportional to
| |
| | |
| :<math> | |
| {u}(x,z) = \frac{1}{\sqrt{{q}_x(z)}} \exp\left(-i k \frac{x^2}{2 {q}_x(z)}\right).
| |
| </math>
| |
| | |
| In two dimensions one can write the potentially elliptical or astigmatic beam as the product
| |
| | |
| :<math>
| |
| {u}(x,y,z) = {u}(x,z)\, {u}(y,z),
| |
| </math>
| |
| | |
| which for the common case of [[circular symmetry]] where <math>{q}_x = {q}_y = {q}</math> and <math>x^2 + y^2 = r^2</math> yields<ref>See Siegman (1986) p. 639. Eq. 29</ref>
| |
| | |
| :<math>
| |
| {u}(r,z) = \frac{1}{{q}(z)}\exp\left( -i k\frac{r^2}{2 {q}(z)}\right).
| |
| </math>
| |
| | |
| ==Power and intensity==
| |
| | |
| === Power through an aperture ===
| |
| The [[power (physics)|power]] ''P'' passing through a circle of radius ''r'' in the transverse plane at position ''z'' is
| |
| | |
| :<math> P(r,z) = P_0 \left[ 1 - e^{-2r^2 / w^2(z)} \right]\ ,</math>
| |
| | |
| where
| |
| | |
| :<math> P_0 = { 1 \over 2 } \pi I_0 w_0^2 </math>
| |
| | |
| is the total power transmitted by the beam.
| |
| | |
| For a circle of radius <math>r = w(z) \, </math>, the fraction of power transmitted through the circle is
| |
| | |
| :<math>{ P(z) \over P_0 } = 1 - e^{-2} \approx 0.865\ .</math>
| |
| | |
| Similarly, about 95 percent of the beam's power will flow through a circle of radius <math>r = 1.224\cdot w(z) \, </math>.
| |
| | |
| === Peak and average intensity ===
| |
| The peak intensity at an axial distance <math>z</math> from the beam waist is calculated using [[L'Hôpital's rule]] as the limit of the enclosed power within a circle of radius <math>r</math>, divided by the area of the circle <math>\pi r^2</math>:
| |
| | |
| :<math>I(0,z) =\lim_{r\to 0} \frac {P_0 \left[ 1 - e^{-2r^2 / w^2(z)} \right]} {\pi r^2}
| |
| = \frac{P_0}{\pi} \lim_{r\to 0} \frac { \left[ -(-2)(2r) e^{-2r^2 / w^2(z)} \right]} {w^2(z)(2r)}
| |
| = {2P_0 \over \pi w^2(z)}. </math>
| |
| | |
| The peak intensity is thus exactly twice the ''average intensity'', obtained by dividing the total power by the area within the radius <math>w(z)</math>.
| |
| | |
| ==Derivation==
| |
| The Gaussian beam formalism begins with the [[electromagnetic wave equation|wave equation for an electromagnetic field]] in free space or in a homogeneous dielectric medium:<ref name="svelto148">Svelto, pp. 148–9.</ref>
| |
| :<math> \nabla^2 U = \frac{1}{c^2} \frac{\partial^2 U}{\partial t^2},</math>
| |
| where <math>U</math> may stand for any one of the six field components <math>E_x</math>, <math>E_y</math>, <math>E_z</math>, <math>B_x</math>, <math>B_y</math>, or <math>B_z</math>. The Gaussian beam formalism proceeds by writing down a solution of the form<ref name="svelto148" />
| |
| :<math> U(x,y,z,t) = u(x,y,z) e^{-i(kz-\omega t)},</math>
| |
| where it is assumed that the beam is sufficiently [[collimated]] along the <math>z</math> axis that <math>\partial^2 u/\partial z^2</math> may be neglected. Substituting this solution into the wave equation above yields the [[Helmholtz equation#Paraxial approximation|paraxial approximation]] to the wave equation:<ref name="svelto148" />
| |
| :<math>\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 2ik \frac{\partial u}{\partial z}.</math>
| |
| | |
| Solving this differential equation yields an infinite set of functions, of which the Gaussian beam is the lowest-order solution or ''[[transverse mode|mode]]''.
| |
| | |
| ==Higher-order modes==
| |
| {{see also|Transverse mode}}
| |
| Gaussian beams are just one possible solution to the paraxial wave equation. Various other sets of [[orthogonal]] solutions are used for modelling laser beams. In the general case, if a complete [[Basis (linear algebra)|basis set]] of solutions is chosen, any real laser beam can be described as a superposition of solutions from this set. The design of the laser determines which basis set of solutions is most useful. In some cases the output of a laser may closely approximate a single higher-order mode. Hermite-Gaussian modes are particularly common, since many laser systems have Cartesian reflection symmetry in the plane perpendicular to the beam's propagation direction.
| |
| | |
| === Hermite-Gaussian modes === <!--Hermite-Gaussian mode redirects here-->
| |
| [[Image:Hermite-gaussian.png|thumb|250px|right|Twelve Hermite-Gaussian modes]]
| |
| Hermite-Gaussian modes are a convenient description for the output of lasers whose cavity design is not radially symmetric, but rather has a distinction between horizontal and vertical. In terms of the previously defined complex <math>q</math> parameter, the amplitude distribution in the <math>x</math>-plane is proportional to
| |
| :<math> | |
| {u}_n(x,z) = \left(\frac{2}{\pi}\right)^{1/4} \left(\frac{1}{2^n n! w_0}\right)^{1/2} \left( \frac{{q}_0}{{q}(z)}\right)^{1/2} \left[\frac{{q}_0}{{q}_0^\ast} \frac{{q}^\ast(z)}{{q}(z)}\right]^{n/2} H_n\left(\frac{\sqrt{2}x}{w(z)}\right) \exp\left[-i \frac{k x^2}{2 {q}(z)}\right]
| |
| </math>
| |
| where the function <math>H_n(x)</math> is the [[Hermite polynomial]] of order <math>n</math> (physicists' form, i.e. <math>H_1(x)=2x\,</math>), and the asterisk indicates [[complex conjugation]]. For the case <math>n=0</math> the equation yields a Gaussian transverse distribution.
| |
| | |
| For two-dimensional [[rectangular coordinates]] one constructs a function <math>{u}_{mn}(x,y,z)=u_m(x,z) u_n(y,z)</math>, where <math>u_n(y,z)</math> has the same form as <math>u_m(x,z)</math>. Mathematically this property is due to the [[separation of variables]] applied to the [[paraxial Helmholtz equation]] for [[Cartesian coordinate system|Cartesian coordinates]].<ref>Siegman (1986), p645, eq. 54</ref>
| |
| | |
| Hermite-Gaussian modes are typically designated "TEM<sub>''mn''</sub>", where ''m'' and ''n'' are the polynomial indices in the x and y directions. A Gaussian beam is thus TEM<sub>00</sub>.
| |
| | |
| === Laguerre-Gaussian modes === <!--Several terms redirect here.-->
| |
| [[Image:LG-wiki.jpg|thumb|right|upright=1.5|The intensity profiles of twelve Laguerre-Gaussian modes]]
| |
| If the problem is cylindrically symmetric, the natural solutions of the paraxial wave equation are Laguerre-Gaussian modes.<ref name="goubau">probably first considered by Goubau and Schwering (1961).</ref> They are written in [[cylindrical coordinates]] using [[Laguerre polynomial]]s
| |
| :<math>{u}(r,\phi,z)=\frac{C^{LG}_{lp}}{w(z)}\left(\frac{r \sqrt{2}}{w(z)}\right)^{|l|}\exp\left(-\frac{r^2}{w^2(z)}\right)L_p^{|l|} \left(\frac{2r^2}{w^2(z)}\right) | |
| \exp\left( i k \frac{r^2}{2 R(z)}\right)\exp(i l \phi)\exp\left[i(2p+|l|+1)\zeta(z)\right],
| |
| </math>
| |
| | |
| where <math>L_p^l</math> are the generalized Laguerre polynomials, the radial index <math>p\ge 0</math> and the azimuthal index is <math>l</math>. <math>C^{LG}_{lp}</math> is an appropriate normalization constant; <math>w(z)</math>, <math>R(z)</math> and <math>\zeta(z)</math> are beam parameters defined [[#Beam parameters|above]].
| |
| | |
| === Ince-Gaussian modes ===
| |
| In [[elliptic coordinates]], one can write the higher-order modes using [[Ince polynomial]]s. The even and odd Ince-Gaussian modes are given by <ref>Bandres and Gutierrez-Vega (2004)</ref>
| |
| | |
| :<math>
| |
| u_\varepsilon \left( \xi ,\eta ,z\right) = \frac{w_{0}}{w\left(
| |
| z\right) }\mathrm{C}_{p}^{m}\left( i\xi ,\varepsilon \right) \mathrm{C}
| |
| _{p}^{m}\left( \eta ,\varepsilon \right) \exp \left[ -ik\frac{r^{2}}{
| |
| 2q\left( z\right) }-\left( p+1\right) \psi _{GS}\left( z\right) \right] ,
| |
| </math>
| |
| where <math>\xi</math> and <math>\eta</math> are the radial and angular elliptic coordinates
| |
| defined by
| |
| | |
| :<math>
| |
| x = \sqrt{\varepsilon /2}w\left( z\right) \cosh \xi \cos \eta ,
| |
| </math>
| |
| :<math> | |
| y = \sqrt{\varepsilon /2}w\left( z\right) \sinh \xi \sin \eta.
| |
| </math>
| |
| <math>{C}_{p}^{m}\left( \eta ,\epsilon \right)</math> are the even Ince
| |
| polynomials of order <math>p</math> and degree <math>m</math>, <math>\varepsilon</math> is the ellipticity parameter, and <math>\psi _{GS}\left( z\right) =\arctan \left( z/z_\mathrm{R}\right)</math>
| |
| is the Gouy phase. The Hermite-Gaussian and Laguerre-Gaussian modes are a special case of the Ince-Gaussian modes for <math>\varepsilon=\infty</math> and <math>\varepsilon=0</math> respectively.
| |
| | |
| === Hypergeometric-Gaussian modes ===
| |
| | |
| There is another important class of paraxial wave modes in [[polar coordinates]] in which the complex amplitude is proportional to a [[confluent hypergeometric function]].
| |
| | |
| These modes have a [[Mathematical singularity|singular]] phase profile and are eigenfunctions of the [[photon orbital angular momentum]]. The intensity profile is characterized by a single brilliant ring with a [[Mathematical singularity|singularity]] at its center, where the field amplitude vanishes.<ref>Karimi et. al (2007)</ref>
| |
| | |
| :<math> | |
| u_{pm}(\rho,\theta;\zeta)=
| |
| \sqrt{\frac{2^{p+|m|+1}}{\pi\Gamma(p+|m|+1)}} \frac{\Gamma(1+|m|+\frac{p}{2})}{\Gamma(|m|+1)}
| |
| \,\,i^{|m|+1}\zeta^{\frac{p}{2}}(\zeta+i)^{-(1+|m|+\frac{p}{2})}\rho^{|m|}e^{-\frac{i\rho^2}{(\zeta+i)}}e^{im\phi}{}_{1}F_{1}\left(-\frac{p}{2}, |m|+1;\frac{r^2}{\zeta(\zeta+i)}\right),
| |
| </math>
| |
| | |
| where <math> m </math> is integer, <math> p\ge-|m| </math> is real valued, <math> \Gamma(x) </math> is the gamma function and <math> {}_{1}F_{1}(a,b;x) </math> is a confluent hypergeometric
| |
| function.
| |
| | |
| Some subfamilies of hypergeometric-Gaussian (HyGG) modes can be listed as the modified Bessel-Gaussian modes, the modified exponential Gaussian modes, and the modified Laguerre–Gaussian modes.
| |
| | |
| The set of hypergeometric-Gaussian modes is overcomplete and is not an orthogonal set of modes. In spite of its complicated field profile, HyGG modes have a very simple profile at the pupil plane:
| |
| | |
| :<math>
| |
| u(\rho,\phi,0) \propto \rho^{p+|m|}e^{-\rho^2+im\phi}.
| |
| </math>
| |
| | |
| See [[Optical vortex]], which explains that the outcoming wave from a pitch-fork hologram is a sub-family of HyGG modes. The HyGG profile while beam propagates along <math>\zeta</math> has a dramatic change and it is not a stable mode below the [[Rayleigh range]].
| |
| | |
| ==See also==
| |
| * [[Bessel beam]]
| |
| * [[Tophat beam]]
| |
| * [[Laser beam profiler]]
| |
| | |
| ==Notes==
| |
| <references/> | |
| | |
| ==References==
| |
| *{{cite book | title = Fundamentals of Photonics | author = Saleh, Bahaa E. A. and Teich, Malvin Carl | publisher = John Wiley & Sons | location = New York | year = 1991 | isbn= 0-471-83965-5 }} Chapter 3, "Beam Optics," pp. 80–107.
| |
| | |
| *{{cite book | title = Optical Coherence and Quantum Optics | author = Mandel, Leonard and Wolf, Emil | publisher = Cambridge University Press | location = Cambridge | year = 1995 | isbn= 0-521-41711-2 }} Chapter 5, "Optical Beams," pp. 267.
| |
| | |
| *{{cite book | first = Anthony E.|last=Siegman|year=1986|title=Lasers|publisher=University Science Books|isbn= 0-935702-11-3}} Chapter 16.
| |
| | |
| *{{cite book | first = Orazio | last = Svelto | title = Principles of Lasers | edition=5th | year=2010 }}
| |
| | |
| *{{cite book | first =Amnon | last =Yariv | year =1989 | title = Quantum Electronics| edition =3rd | publisher =Wiley | isbn =0-471-60997-8}}
| |
| | |
| *{{cite arxiv
| |
| | author=F. Pampaloni and J. Enderlein
| |
| | title=Gaussian, Hermite-Gaussian, and Laguerre-Gaussian beams: A primer
| |
| | journal=
| |
| | year = 2004
| |
| | eprint = physics/0410021
| |
| | class=physics.optics
| |
| }}
| |
| *{{cite journal
| |
| | author= G. Goubau and F. Schwering
| |
| | title=On the guided propagation of electromagnetic wave beams
| |
| | journal= IRE Trans.
| |
| | volume = 9
| |
| | year = 1961
| |
| | pages = 248-256
| |
| | doi= 10.1109/TAP.1961.1144999
| |
| | MR = 0134166 }}
| |
| *{{cite journal
| |
| | author= Miguel A. Bandres and Julio C. Gutierrez-Vega
| |
| | title=Ince Gaussian beams
| |
| | journal= Opt. Lett.
| |
| | pages = 144–146
| |
| | publisher = OSA
| |
| | volume = 29
| |
| | year = 2004
| |
| | url = http://www.opticsinfobase.org/abstract.cfm?URI=ol-29-2-144
| |
| | doi= 10.1364/OL.29.000144
| |
| | pmid= 14743992
| |
| | issue= 2
| |
| |bibcode = 2004OptL...29..144B }}
| |
| *{{cite journal
| |
| | author= E. Karimi, G. Zito, B. Piccirillo, L. Marrucci, and E. Santamato
| |
| | title= Hypergeometric-Gaussian beams
| |
| | journal= Opt. Lett.
| |
| | pages = 3053–3055
| |
| | publisher = OSA
| |
| | volume = 32
| |
| | year = 2007
| |
| | url = http://www.opticsinfobase.org/abstract.cfm?URI=ol-32-21-3053
| |
| | doi= 10.1364/OL.32.003053
| |
| | pmid= 17975594
| |
| | issue= 21
| |
| |bibcode = 2007OptL...32.3053K |arxiv = 0712.0782 }}
| |
| * [http://www.cvimellesgriot.com/Products/Documents/TechnicalGuide/Gaussian-Beam-Optics.pdf Gaussian Beam Propagation] - CVI Melles Griot Technical Guide
| |
| * [http://www.newport.com/Gaussian-Beam-Optics/144899/1033/content.aspx Gaussian Beam Optics Tutorial, Newport]
| |
| | |
| {{DEFAULTSORT:Gaussian Beam}}
| |
| [[Category:Laser science]]
| |
| [[Category:Electromagnetic radiation]]
| |