Expander graph: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
en>Bgwhite
m WP:CHECKWIKI error fix. Broken bracket problem. Do general fixes and cleanup if needed. - using AWB (9479)
 
Line 1: Line 1:
In [[combinatorics]], an '''expander graph''' is a [[sparse graph]] that has strong [[connectivity (graph theory)|connectivity]] properties, quantified using [[vertex (graph theory)|vertex]], [[edge (graph theory)|edge]] or spectral expansion as described below. Expander constructions have spawned research in pure and applied mathematics, with several applications to [[Computational complexity theory|complexity theory]], design of robust [[computer network]]s, and the theory of [[error-correcting code]]s.<ref>{{harvtxt|Hoory|Linial|Widgerson|2006}}</ref>
Tutaj nie ma jednej, wyjątkowej metody. Czy [http://katalog.gazeta.pl/internet,i,komputery/pozycjonowanie,bialystok,s,48672/ pozycjonowanie - Białystok] wideto więc pozycjonować stronę i jeśli tak, owe w jaki sposób? Pozycjonować paginę internetową wolno na wiele sposób - wolno przydawać ją do folderów stronic, orzekać się linkami, kupić linki, czy temuż po prostu skupić się na jej ewoluowaniu a sumować na oczywisty wzrost zalety treściowej paginy, który sam przełoży się na rozwój wielkości konsumentów.<br><br>Pozycjonować paginę zawsze czato. ZAŚ nienaturalne wahania kondycji zdołają sprawić jej istotne zabicie z wyników jako sankcję za umilanie niemoralnych postępowań w stosunku do konkurencji a tymiż wyszukiwarki internetowej. Najodpowiedniej przekazać się na doznanie speców, którzy za malusieńką należnością podejmą się pozycjonowania polskiej gablotki zaś zapożyczą na siebie wszelkie potencjalne, odmowne konsekwencje pozycjonowania.<br><br>Czato chociaż pamiętać, że pozycjonowanie nie istnieje biegiem jednorazowym. Niepodrzędnie od owego, czy przemykamy blog o konserwacji ogródka, czy samego paginę z przewodnikami dla majsterkowiczów, natomiast skończywszy na portalu ze zsunięciami - jadalne pozycje w wyszukiwarką mieszają się na przyrost ilości nabywców.<br><br>Jeżeli tylko przestaniem hołubić o pozycję polskiej stronicy internetowej, to prawdopodobnie w ciągu kilku najbliższych tygodniem zleci ona w efektach wyszukiwań. W jaki sposób pozycjonować?
 
==Definitions==
Intuitively, an expander is a finite, undirected [[multigraph]] in which every subset of the vertices "that is not too large" has a "large" boundary. Different formalisations of these notions give rise to different notions of expanders: ''edge expanders'', ''vertex expanders'', and ''spectral expanders'', as defined below.
 
A disconnected graph is not an expander, since the boundary of a connected component is empty. Every connected graph is an expander; however, different connected graphs have different expansion parameters. The [[complete graph]] has the best expansion property, but it has largest possible degree. Informally, a graph is a good expander if it has low degree and high expansion parameters.
 
===Edge expansion===
The ''edge expansion'' (also ''isoperimetric number'' or [[Cheeger constant (graph theory)|Cheeger constant]]) ''h''(''G'') of a graph ''G'' on ''n'' vertices is defined as
: <math>h(G) = \min_{0 < |S| \le \frac{n}{2} } \frac{|\partial(S)|}{|S|},</math>
where the minimum is over all nonempty sets ''S'' of at most ''n''/2 vertices and ∂(''S'') is the ''edge boundary'' of ''S'', i.e., the set of edges with exactly one endpoint in ''S''.<ref>Definition 2.1 in {{harvtxt|Hoory|Linial|Widgerson|2006}}</ref>
 
===Vertex expansion===
The ''vertex isoperimetric number'' <math>h_{\text{out}}(G)</math> (also ''vertex expansion'' or ''magnification'') of a graph ''G'' is defined as
: <math>h_{\text{out}}(G) = \min_{0 < |S|\le \frac{n}{2}} \frac{|\partial_{\text{out}}(S)|}{|S|},</math>
where <math>\partial_{\text{out}}(S)</math> is the ''outer boundary'' of ''S'', i.e., the set of vertices in <math>V(G)\setminus S</math> with at least one neighbor in ''S''.<ref name="BobkovHoudre">{{harvtxt|Bobkov|Houdré|Tetali|2000}}</ref> In a variant of this definition (called ''unique neighbor expansion'') <math>\partial_{\text{out}}(S)</math> is replaced by the set of vertices in ''V'' with ''exactly'' one neighbor in ''S''.<ref name="AlonCapalbo">{{harvtxt|Alon|Capalbo|2002}}</ref>
 
The ''vertex isoperimetric number'' <math>h_{\text{in}}(G)</math> of a graph ''G'' is defined as
: <math>h_{\text{in}}(G) = \min_{0 < |S|\le \frac{n}{2}} \frac{|\partial_{\text{in}}(S)|}{|S|},</math>
where <math>\partial_{\text{in}}(S)</math> is the ''inner boundary'' of ''S'', i.e., the set of vertices in ''S'' with at least one neighbor in <math>V(G)\setminus S</math>.<ref name="BobkovHoudre" />
 
===Spectral expansion===
When ''G'' is [[regular graph|''d''-regular]], a [[linear algebra]]ic definition of expansion is possible based on the [[Eigenvalue#Eigenvalues of matrices|eigenvalues]] of the [[adjacency matrix]] ''A'' = ''A''(''G'') of ''G'', where <math>A_{ij}</math> is the number of edges between vertices ''i'' and ''j''.<ref>cf. Section 2.3 in {{harvtxt|Hoory|Linial|Widgerson|2006}}</ref> Because ''A'' is [[symmetric matrix|symmetric]], the [[spectral theorem]] implies that ''A'' has ''n'' real-valued eigenvalues <math>\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_{n}</math>. It is known that all these eigenvalues are in [−''d'', ''d''].
 
Because ''G'' is regular, the uniform distribution <math>u\in\R^n</math> with <math>u_i=1/n</math> for all ''i'' = 1, ..., ''n'' is the [[stationary distribution]] of ''G''. That is, we have ''Au'' = ''du'', and ''u'' is an eigenvector of ''A'' with eigenvalue λ<sub>1</sub> = ''d'', where ''d'' is the [[degree (graph theory)|degree]] of the vertices of ''G''. The ''[[spectral gap]]'' of ''G'' is defined to be ''d''−λ<sub>2</sub>, and it measures the spectral expansion of the graph ''G''.<ref>This definition of the spectral gap is from Section 2.3 in {{harvtxt|Hoory|Linial|Widgerson|2006}}</ref>
 
It is known that λ<sub>''n''</sub> = −''d'' if and only if ''G'' is bipartite. In many contexts, for example in the [[expander mixing lemma]], it is necessary to bound from below not only the gap between λ<sub>1</sub> and λ<sub>2</sub>, but also the gap between λ<sub>1</sub> and the second-largest eigenvalue in absolute value:
:<math>\lambda=\max\{|\lambda_2|, |\lambda_{n}|\}</math>.
Since this is the largest eigenvalue corresponding to an eigenvector orthogonal to ''u'', it can be equivalently defined using the [[Rayleigh quotient]]:
:<math>\lambda=\max_{0\neq v\perp u} \frac{\|Av\|_2}{\|v\|_2},</math>
where
:<math>\|v\|_2=\left(\sum_{i=1}^n v_i^2\right)^{1/2}</math>
is the [[2-norm]] of the vector <math>v\in\R^n</math>.
 
The normalized versions of these definitions are also widely used and more convenient in stating some results. Here one considers the matrix <math>\tfrac{1}{d} A</math>, which is the [[Markov transition matrix]] of the graph ''G''. Its eigenvalues are between −1 and 1. For not necessarily regular graphs, the spectrum of a graph can be defined similarly using the eigenvalues of the [[Laplacian matrix]]. For directed graphs, one considers the [[singular values]] of the adjacency matrix ''A'', which are equal to the roots of the eigenvalues of the symmetric matrix ''A<sup>T</sup>A''.
 
==Relationships between different expansion properties==
The expansion parameters defined above are related to each other. In particular, for any ''d''-regular graph ''G'',
 
:<math>h_{\text{out}}(G) \le h(G) \le d \cdot h_{\text{out}}(G).</math>
 
Consequently, for constant degree graphs, vertex and edge expansion are qualitatively the same.
 
===Cheeger inequalities===
When ''G'' is ''d''-regular, there is a relationship between ''h''(''G'') and the spectral gap ''d'' − λ<sub>2</sub> of ''G''. An inequality due to Tanner and independently [[Noga Alon|Alon]] and [[Vitali Milman|Milman]]{{Sfn|Alon|Spencer|2011}} states that<ref>Theorem 2.4 in {{harvtxt|Hoory|Linial|Widgerson|2006}}</ref>
 
: <math>\tfrac{1}{2}(d - \lambda_2) \le h(G) \le \sqrt{2d(d - \lambda_2)}.</math>
 
This inequality is closely related to the [[Cheeger bound]] for [[Markov chains]] and can be seen as a discrete version of [[Cheeger_constant#Cheeger.27s_inequality|Cheeger's inequality]] in [[Riemannian geometry]].
 
Similar connections between vertex isoperimetric numbers and the spectral gap have also been studied:<ref>See Theorem 1 and p.156, l.1 in {{harvtxt|Bobkov|Houdré|Tetali|2000}}. Note that λ<sub>2</sub> there corresponds to 2(''d''&nbsp;−&nbsp;λ<sub>2</sub>) of the current article (see p.153, l.5)</ref>
: <math>h_{\text{out}}(G)\le \left(\sqrt{4 (d-\lambda_2)} + 1\right)^2 -1</math>
: <math>h_{\text{in}}(G) \le \sqrt{8(d-\lambda_2)}.</math>
Asymptotically speaking, the quantities <math>\frac{h^2}{d}</math>, <math>h_{\text{out}}</math>, and <math>h_{\text{in}}^2</math> are all bounded above by the spectral gap <math>O(d-\lambda_2)</math>.
 
==Constructions==
There are three general strategies for constructing families of expander graphs.<ref>see, e.g., {{harvtxt|Yehudayoff|2012}}</ref> The first strategy is algebraic and group-theoretic, the second strategy is analytic and uses [[additive combinatorics]], and the third strategy is combinatorial and uses the [[zig-zag product|zig-zag]] and related graphs products.
 
===Margulis-Gabber-Galil===
[[Abstract algebra|Algebraic]] constructions based on [[Cayley graph]]s are known for various variants of expander graphs. The following construction is due to Margulis and has been analysed by Gabber and Galil.<ref>see, e.g., p.9 of {{harvtxt|Goldreich|2011}}</ref> For every natural number ''n'', one considers the graph ''G<sub>n</sub>'' with the vertex set <math>\mathbb Z_n \times \mathbb Z_n</math>, where <math>\mathbb Z_n=\mathbb Z/n\mathbb Z</math>: For every vertex <math>(x,y)\in\mathbb Z_n \times \mathbb Z_n</math>, its eight adjacent vertices are
 
:<math>(x \pm 2y,y), (x \pm (2y+1),y), (x,y \pm 2x), (x,y \pm (2x+1)).</math>
 
Then the following holds:
 
<blockquote>'''Theorem.''' For all ''n'', the graph ''G<sub>n</sub>'' has second-largest eigenvalue <math>\lambda(G)\leq 5 \sqrt{2}</math>.</blockquote>
 
===Ramanujan graphs===
{{main|Ramanujan graph}}
By a theorem of Alon and Boppana, all large enough ''d''-regular graphs satisfy <math>\lambda \ge 2\sqrt{d-1} - o(1)</math>, where λ is the second largest eigenvalue in absolute value.<ref>Theorem 2.7 of {{harvtxt|Hoory|Linial|Widgerson|2006}}</ref> [[Ramanujan graph]]s are ''d''-regular graphs for which this bound is tight. That is, they satisfy <math>\lambda \le 2\sqrt{d-1}</math>.<ref>Definition 5.11 of {{harvtxt|Hoory|Linial|Widgerson|2006}}</ref> Hence Ramanujan graphs have an asymptotically smallest possible λ. They are also excellent spectral expanders.
 
[[Alexander Lubotzky|Lubotzky]], Phillips, and Sarnak (1988), Margulis (1988), and Morgenstern (1994) show how Ramanujan graphs can be constructed explicitly.<ref>Theorem 5.12 of {{harvtxt|Hoory|Linial|Widgerson|2006}}</ref> By a theorem of Friedman (2003), [[Random regular graph|random d-regular graphs]] on ''n'' vertices are almost Ramanujan, that is, they satisfy
 
:<math>\lambda \le 2\sqrt{d-1}+\epsilon</math>
 
with probability <math>1-o(1)</math> as ''n'' → ∞ tends to infinity.<ref>Theorem 7.10 of {{harvtxt|Hoory|Linial|Widgerson|2006}}</ref>
 
==Applications and useful properties==
The original motivation for expanders is to build economical robust networks (phone or computer): an expander with bounded valence is precisely an asymptotic robust graph with number of edges growing linearly with size (number of vertices), for all subsets.
 
Expander graphs have found extensive applications in [[computer science]], in designing [[algorithm]]s, [[Expander code|error correcting codes]], [[Extractor (mathematics)|extractors]], [[pseudorandom generator]]s, [[sorting network]]s ({{harvtxt|Ajtai|Komlós|Szemerédi|1983}}) and robust [[computer network]]s. They have also been used in proofs of many important results in [[computational complexity theory]], such as [[SL (complexity)|SL]]=[[L (complexity)|L]] ({{harvtxt|Reingold|2008}}) and the [[PCP theorem]] ({{harvtxt|Dinur|2007}}). In [[cryptography]], expander graphs are used to construct [[hash function]]s.
 
The following are some properties of expander graphs that have proven useful in many areas.
 
===Expander mixing lemma===
{{Main|Expander mixing lemma}}
The expander mixing lemma states that, for any two subsets of the vertices ''S'', ''T'' ⊆ ''V'', the number of edges between ''S'' and ''T'' is approximately what you would expect in a random ''d''-regular graph. The approximation is better, the smaller <math>\lambda=\max\{|\lambda_2|,|\lambda_n|\}</math> is. In a random ''d''-regular graph, as well as in an [[Erdős–Rényi model|Erdős–Rényi random graph]] with edge probability ''d''/''n'', we expect <math>\tfrac{d}{n} \cdot |S| \cdot |T|</math> edges between ''S'' and ''T''.
 
More formally, let ''E''(''S'', ''T'') denote the number of edges between ''S'' and ''T''. If the two sets are not disjoint, edges in their intersection are counted twice, that is,
 
:<math>E(S,T)=2|E(G[S\cap T])| + E(S\setminus T,T) + E(S,T\setminus S)</math>.
 
Then the expander mixing lemma says that the following inequality holds:
 
:<math>\left|E(S, T) - \frac{d \cdot |S| \cdot |T|}{n}\right| \leq d\lambda  \sqrt{|S| \cdot |T|},</math>
 
where λ is the absolute value of the '''normalized''' second largest eigenvalue.
 
===Expander walk sampling===
{{Main|Expander walk sampling}}
The [[Chernoff bound]] states that, when sampling many independent samples from a random variables in the range [−1, 1], with high probability the average of our samples is close to the expectation of the random variable.  The expander walk sampling lemma, due to {{harvtxt|Ajtai|Komlós|Szemerédi|1987}} and {{harvtxt|Gillman|1998}}, states that this also holds true when sampling from a walk on an expander graph. This is particularly useful in the theory of [[derandomization]], since sampling according to an expander walk uses many fewer random bits than sampling independently.
 
==See also==
*[[Algebraic connectivity]]
*[[Zig-zag product]]
 
==Notes==
{{Reflist|colwidth=25em}}
 
==References==
{{Refbegin|colwidth=25em}}
'''Textbooks and surveys'''
* {{cite book|title=The Probabilistic Method|first1=N.|last1=Alon|author1-link=Noga Alon|first2=Joel H.|last2=Spencer|author2-link=Joel Spencer|publisher=John Wiley & Sons|year=2011|edition=3rd|chapter=9.2. Eigenvalues and Expanders|ref=harv}}
* {{Citation | last=Chung |first=Fan R. K. | title=Spectral Graph Theory | series=CBMS Regional Conference Series in Mathematics | volume=92 | publisher=[[American Mathematical Society]] | year=1997 | isbn=0-8218-0315-8}}
* {{Citation | first1=Guiliana |last1=Davidoff | first2=Peter | last2=Sarnak | first3=Alain | last3=Valette | title=Elementary number theory, group theory and Ramanujan graphs | publisher=[[Cambridge University Press]] | series=LMS student texts | volume=55 | year=2003 | isbn=0-521-53143-8}}
* {{Citation | first1=Shlomo | last1=Hoory | first2=Nathan | last2=Linial | author2-link = Nati Linial | first3=Avi | last3=Widgerson | author3-link = Avi Wigderson | title=Expander graphs and their applications | journal= Bulletin (New series) of the American Mathematical Society | volume=43 | issue=4 | pages=439–561 | url=http://www.cs.huji.ac.il/~nati/PAPERS/expander_survey.pdf | year=2006 | doi = 10.1090/S0273-0979-06-01126-8}}
* {{Citation | first1=Mike |last1=Krebs | first2=Anthony | last2=Shaheen | title=Expander families and Cayley graphs: A beginner's guide | publisher=Oxford University Press | year=2011 | isbn=0-19-976711-4}}
'''Research articles'''
* {{Citation|last1=Ajtai|first1=M.|author1-link=Miklós Ajtai|last2=Komlós|first2=J.|author2-link=János Komlós (mathematician)|last3=Szemerédi|first3=E.|author3-link=Endre Szemerédi|chapter=An O(n log n) sorting network|title=Proceedings of the 15th Annual ACM Symposium on Theory of Computing|pages=1–9|year=1983|doi=10.1145/800061.808726|isbn=0-89791-099-0}}
* {{Citation
| first1=M. | last1=Ajtai
| first2=J. | last2=Komlós
| first3=E. | last3=Szemerédi
| chapter=Deterministic simulation in LOGSPACE
| title=Proceedings of the 19th Annual ACM Symposium on Theory of Computing
| pages=132–140
| year=1987
| work=ACM
| doi=10.1145/28395.28410
| isbn=0-89791-221-7
}}
* {{cite doi|10.1109/SFCS.2002.1181884}}
* {{Citation
    |last1=Bobkov|first1=S.
    |last2=Houdré|first2=C.
    |last3=Tetali|first3=P.
    |title=λ<sub>∞</sub>, vertex isoperimetry and concentration|journal=Combinatorica|volume=20|issue=2|year=2000|doi=10.1007/s004930070018|pages = 153–172}}.
* {{Citation|last=Dinur|first=Irit|title=The PCP theorem by gap amplification|journal=Journal of the ACM|volume=54|issue=3|year=2007|doi=10.1145/1236457.1236459|pages=12}}.
* {{Citation
| first=D. | last=Gillman
| title=A Chernoff Bound for Random Walks on Expander Graphs
| journal=SIAM Journal on Computing
| volume=27
| issue=4,
| pages=1203–1220
| year=1998
| publisher=Society for Industrial and Applied Mathematics
| doi=10.1137/S0097539794268765
}}
* {{Citation
| first=Oded
| last=Goldreich
| title=Basic Facts about Expander Graphs
| journal = Studies in Complexity and Cryptography
| year      = 2011
| pages    = 451–464
| doi        = 10.1007/978-3-642-22670-0_30
| ref=harv
}}
* {{Citation|first=Omer|last=Reingold|authorlink=Omer Reingold|title=Undirected connectivity in log-space|journal=[[Journal of the ACM]]|year=2008|
volume=55|issue=4|pages=Article 17, 24 pages|doi=10.1145/1391289.1391291
}}
* {{Citation
|first=Amir
|last=Yehudayoff
|title=Proving expansion in three steps
|journal=[[ACM SIGACT News]]
|year=2012
|volume=43
|issue=3
|pages=67–84
|doi=10.1145/2421096.2421115
|ref=harv
}}
{{Refend}}
 
== External links ==
* [http://www.ams.org/notices/200407/what-is.pdf Brief introduction in Notices of the American Mathematical Society]
* [http://michaelnielsen.org/blog/archive/notes/expander_graphs.pdf Introductory paper by Michael Nielsen]
* [http://www.math.ias.edu/~boaz/ExpanderCourse/ Lecture notes from a course on expanders (by Nati Linial and Avi Wigderson)]
* [http://ttic.uchicago.edu/~prahladh/teaching/spring05/index.html Lecture notes from a course on expanders (by Prahladh Harsha)]
*[http://www.yann-ollivier.org/specgraph/specgraph.html Definition and application of spectral gap]
 
{{DEFAULTSORT:Expander Graph}}
[[Category:Graph families]]

Latest revision as of 13:07, 11 December 2014

Tutaj nie ma jednej, wyjątkowej metody. Czy pozycjonowanie - Białystok wideto więc pozycjonować stronę i jeśli tak, owe w jaki sposób? Pozycjonować paginę internetową wolno na wiele sposób - wolno przydawać ją do folderów stronic, orzekać się linkami, kupić linki, czy temuż po prostu skupić się na jej ewoluowaniu a sumować na oczywisty wzrost zalety treściowej paginy, który sam przełoży się na rozwój wielkości konsumentów.

Pozycjonować paginę zawsze czato. ZAŚ nienaturalne wahania kondycji zdołają sprawić jej istotne zabicie z wyników jako sankcję za umilanie niemoralnych postępowań w stosunku do konkurencji a tymiż wyszukiwarki internetowej. Najodpowiedniej przekazać się na doznanie speców, którzy za malusieńką należnością podejmą się pozycjonowania polskiej gablotki zaś zapożyczą na siebie wszelkie potencjalne, odmowne konsekwencje pozycjonowania.

Czato chociaż pamiętać, że pozycjonowanie nie istnieje biegiem jednorazowym. Niepodrzędnie od owego, czy przemykamy blog o konserwacji ogródka, czy samego paginę z przewodnikami dla majsterkowiczów, natomiast skończywszy na portalu ze zsunięciami - jadalne pozycje w wyszukiwarką mieszają się na przyrost ilości nabywców.

Jeżeli tylko przestaniem hołubić o pozycję polskiej stronicy internetowej, to prawdopodobnie w ciągu kilku najbliższych tygodniem zleci ona w efektach wyszukiwań. W jaki sposób pozycjonować?