|
|
Line 1: |
Line 1: |
| In [[combinatorics]], an '''expander graph''' is a [[sparse graph]] that has strong [[connectivity (graph theory)|connectivity]] properties, quantified using [[vertex (graph theory)|vertex]], [[edge (graph theory)|edge]] or spectral expansion as described below. Expander constructions have spawned research in pure and applied mathematics, with several applications to [[Computational complexity theory|complexity theory]], design of robust [[computer network]]s, and the theory of [[error-correcting code]]s.<ref>{{harvtxt|Hoory|Linial|Widgerson|2006}}</ref>
| | Tutaj nie ma jednej, wyjątkowej metody. Czy [http://katalog.gazeta.pl/internet,i,komputery/pozycjonowanie,bialystok,s,48672/ pozycjonowanie - Białystok] wideto więc pozycjonować stronę i jeśli tak, owe w jaki sposób? Pozycjonować paginę internetową wolno na wiele sposób - wolno przydawać ją do folderów stronic, orzekać się linkami, kupić linki, czy temuż po prostu skupić się na jej ewoluowaniu a sumować na oczywisty wzrost zalety treściowej paginy, który sam przełoży się na rozwój wielkości konsumentów.<br><br>Pozycjonować paginę zawsze czato. ZAŚ nienaturalne wahania kondycji zdołają sprawić jej istotne zabicie z wyników jako sankcję za umilanie niemoralnych postępowań w stosunku do konkurencji a tymiż wyszukiwarki internetowej. Najodpowiedniej przekazać się na doznanie speców, którzy za malusieńką należnością podejmą się pozycjonowania polskiej gablotki zaś zapożyczą na siebie wszelkie potencjalne, odmowne konsekwencje pozycjonowania.<br><br>Czato chociaż pamiętać, że pozycjonowanie nie istnieje biegiem jednorazowym. Niepodrzędnie od owego, czy przemykamy blog o konserwacji ogródka, czy samego paginę z przewodnikami dla majsterkowiczów, natomiast skończywszy na portalu ze zsunięciami - jadalne pozycje w wyszukiwarką mieszają się na przyrost ilości nabywców.<br><br>Jeżeli tylko przestaniem hołubić o pozycję polskiej stronicy internetowej, to prawdopodobnie w ciągu kilku najbliższych tygodniem zleci ona w efektach wyszukiwań. W jaki sposób pozycjonować? |
| | |
| ==Definitions==
| |
| Intuitively, an expander is a finite, undirected [[multigraph]] in which every subset of the vertices "that is not too large" has a "large" boundary. Different formalisations of these notions give rise to different notions of expanders: ''edge expanders'', ''vertex expanders'', and ''spectral expanders'', as defined below.
| |
| | |
| A disconnected graph is not an expander, since the boundary of a connected component is empty. Every connected graph is an expander; however, different connected graphs have different expansion parameters. The [[complete graph]] has the best expansion property, but it has largest possible degree. Informally, a graph is a good expander if it has low degree and high expansion parameters.
| |
| | |
| ===Edge expansion===
| |
| The ''edge expansion'' (also ''isoperimetric number'' or [[Cheeger constant (graph theory)|Cheeger constant]]) ''h''(''G'') of a graph ''G'' on ''n'' vertices is defined as
| |
| : <math>h(G) = \min_{0 < |S| \le \frac{n}{2} } \frac{|\partial(S)|}{|S|},</math> | |
| where the minimum is over all nonempty sets ''S'' of at most ''n''/2 vertices and ∂(''S'') is the ''edge boundary'' of ''S'', i.e., the set of edges with exactly one endpoint in ''S''.<ref>Definition 2.1 in {{harvtxt|Hoory|Linial|Widgerson|2006}}</ref>
| |
| | |
| ===Vertex expansion===
| |
| The ''vertex isoperimetric number'' <math>h_{\text{out}}(G)</math> (also ''vertex expansion'' or ''magnification'') of a graph ''G'' is defined as
| |
| : <math>h_{\text{out}}(G) = \min_{0 < |S|\le \frac{n}{2}} \frac{|\partial_{\text{out}}(S)|}{|S|},</math>
| |
| where <math>\partial_{\text{out}}(S)</math> is the ''outer boundary'' of ''S'', i.e., the set of vertices in <math>V(G)\setminus S</math> with at least one neighbor in ''S''.<ref name="BobkovHoudre">{{harvtxt|Bobkov|Houdré|Tetali|2000}}</ref> In a variant of this definition (called ''unique neighbor expansion'') <math>\partial_{\text{out}}(S)</math> is replaced by the set of vertices in ''V'' with ''exactly'' one neighbor in ''S''.<ref name="AlonCapalbo">{{harvtxt|Alon|Capalbo|2002}}</ref>
| |
| | |
| The ''vertex isoperimetric number'' <math>h_{\text{in}}(G)</math> of a graph ''G'' is defined as
| |
| : <math>h_{\text{in}}(G) = \min_{0 < |S|\le \frac{n}{2}} \frac{|\partial_{\text{in}}(S)|}{|S|},</math>
| |
| where <math>\partial_{\text{in}}(S)</math> is the ''inner boundary'' of ''S'', i.e., the set of vertices in ''S'' with at least one neighbor in <math>V(G)\setminus S</math>.<ref name="BobkovHoudre" />
| |
| | |
| ===Spectral expansion===
| |
| When ''G'' is [[regular graph|''d''-regular]], a [[linear algebra]]ic definition of expansion is possible based on the [[Eigenvalue#Eigenvalues of matrices|eigenvalues]] of the [[adjacency matrix]] ''A'' = ''A''(''G'') of ''G'', where <math>A_{ij}</math> is the number of edges between vertices ''i'' and ''j''.<ref>cf. Section 2.3 in {{harvtxt|Hoory|Linial|Widgerson|2006}}</ref> Because ''A'' is [[symmetric matrix|symmetric]], the [[spectral theorem]] implies that ''A'' has ''n'' real-valued eigenvalues <math>\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_{n}</math>. It is known that all these eigenvalues are in [−''d'', ''d''].
| |
| | |
| Because ''G'' is regular, the uniform distribution <math>u\in\R^n</math> with <math>u_i=1/n</math> for all ''i'' = 1, ..., ''n'' is the [[stationary distribution]] of ''G''. That is, we have ''Au'' = ''du'', and ''u'' is an eigenvector of ''A'' with eigenvalue λ<sub>1</sub> = ''d'', where ''d'' is the [[degree (graph theory)|degree]] of the vertices of ''G''. The ''[[spectral gap]]'' of ''G'' is defined to be ''d''−λ<sub>2</sub>, and it measures the spectral expansion of the graph ''G''.<ref>This definition of the spectral gap is from Section 2.3 in {{harvtxt|Hoory|Linial|Widgerson|2006}}</ref>
| |
| | |
| It is known that λ<sub>''n''</sub> = −''d'' if and only if ''G'' is bipartite. In many contexts, for example in the [[expander mixing lemma]], it is necessary to bound from below not only the gap between λ<sub>1</sub> and λ<sub>2</sub>, but also the gap between λ<sub>1</sub> and the second-largest eigenvalue in absolute value:
| |
| :<math>\lambda=\max\{|\lambda_2|, |\lambda_{n}|\}</math>.
| |
| Since this is the largest eigenvalue corresponding to an eigenvector orthogonal to ''u'', it can be equivalently defined using the [[Rayleigh quotient]]:
| |
| :<math>\lambda=\max_{0\neq v\perp u} \frac{\|Av\|_2}{\|v\|_2},</math>
| |
| where
| |
| :<math>\|v\|_2=\left(\sum_{i=1}^n v_i^2\right)^{1/2}</math>
| |
| is the [[2-norm]] of the vector <math>v\in\R^n</math>.
| |
| | |
| The normalized versions of these definitions are also widely used and more convenient in stating some results. Here one considers the matrix <math>\tfrac{1}{d} A</math>, which is the [[Markov transition matrix]] of the graph ''G''. Its eigenvalues are between −1 and 1. For not necessarily regular graphs, the spectrum of a graph can be defined similarly using the eigenvalues of the [[Laplacian matrix]]. For directed graphs, one considers the [[singular values]] of the adjacency matrix ''A'', which are equal to the roots of the eigenvalues of the symmetric matrix ''A<sup>T</sup>A''.
| |
| | |
| ==Relationships between different expansion properties==
| |
| The expansion parameters defined above are related to each other. In particular, for any ''d''-regular graph ''G'',
| |
| | |
| :<math>h_{\text{out}}(G) \le h(G) \le d \cdot h_{\text{out}}(G).</math>
| |
| | |
| Consequently, for constant degree graphs, vertex and edge expansion are qualitatively the same.
| |
| | |
| ===Cheeger inequalities===
| |
| When ''G'' is ''d''-regular, there is a relationship between ''h''(''G'') and the spectral gap ''d'' − λ<sub>2</sub> of ''G''. An inequality due to Tanner and independently [[Noga Alon|Alon]] and [[Vitali Milman|Milman]]{{Sfn|Alon|Spencer|2011}} states that<ref>Theorem 2.4 in {{harvtxt|Hoory|Linial|Widgerson|2006}}</ref>
| |
| | |
| : <math>\tfrac{1}{2}(d - \lambda_2) \le h(G) \le \sqrt{2d(d - \lambda_2)}.</math>
| |
| | |
| This inequality is closely related to the [[Cheeger bound]] for [[Markov chains]] and can be seen as a discrete version of [[Cheeger_constant#Cheeger.27s_inequality|Cheeger's inequality]] in [[Riemannian geometry]].
| |
| | |
| Similar connections between vertex isoperimetric numbers and the spectral gap have also been studied:<ref>See Theorem 1 and p.156, l.1 in {{harvtxt|Bobkov|Houdré|Tetali|2000}}. Note that λ<sub>2</sub> there corresponds to 2(''d'' − λ<sub>2</sub>) of the current article (see p.153, l.5)</ref>
| |
| : <math>h_{\text{out}}(G)\le \left(\sqrt{4 (d-\lambda_2)} + 1\right)^2 -1</math>
| |
| : <math>h_{\text{in}}(G) \le \sqrt{8(d-\lambda_2)}.</math>
| |
| Asymptotically speaking, the quantities <math>\frac{h^2}{d}</math>, <math>h_{\text{out}}</math>, and <math>h_{\text{in}}^2</math> are all bounded above by the spectral gap <math>O(d-\lambda_2)</math>.
| |
| | |
| ==Constructions==
| |
| There are three general strategies for constructing families of expander graphs.<ref>see, e.g., {{harvtxt|Yehudayoff|2012}}</ref> The first strategy is algebraic and group-theoretic, the second strategy is analytic and uses [[additive combinatorics]], and the third strategy is combinatorial and uses the [[zig-zag product|zig-zag]] and related graphs products.
| |
| | |
| ===Margulis-Gabber-Galil===
| |
| [[Abstract algebra|Algebraic]] constructions based on [[Cayley graph]]s are known for various variants of expander graphs. The following construction is due to Margulis and has been analysed by Gabber and Galil.<ref>see, e.g., p.9 of {{harvtxt|Goldreich|2011}}</ref> For every natural number ''n'', one considers the graph ''G<sub>n</sub>'' with the vertex set <math>\mathbb Z_n \times \mathbb Z_n</math>, where <math>\mathbb Z_n=\mathbb Z/n\mathbb Z</math>: For every vertex <math>(x,y)\in\mathbb Z_n \times \mathbb Z_n</math>, its eight adjacent vertices are
| |
| | |
| :<math>(x \pm 2y,y), (x \pm (2y+1),y), (x,y \pm 2x), (x,y \pm (2x+1)).</math>
| |
| | |
| Then the following holds:
| |
| | |
| <blockquote>'''Theorem.''' For all ''n'', the graph ''G<sub>n</sub>'' has second-largest eigenvalue <math>\lambda(G)\leq 5 \sqrt{2}</math>.</blockquote>
| |
| | |
| ===Ramanujan graphs===
| |
| {{main|Ramanujan graph}}
| |
| By a theorem of Alon and Boppana, all large enough ''d''-regular graphs satisfy <math>\lambda \ge 2\sqrt{d-1} - o(1)</math>, where λ is the second largest eigenvalue in absolute value.<ref>Theorem 2.7 of {{harvtxt|Hoory|Linial|Widgerson|2006}}</ref> [[Ramanujan graph]]s are ''d''-regular graphs for which this bound is tight. That is, they satisfy <math>\lambda \le 2\sqrt{d-1}</math>.<ref>Definition 5.11 of {{harvtxt|Hoory|Linial|Widgerson|2006}}</ref> Hence Ramanujan graphs have an asymptotically smallest possible λ. They are also excellent spectral expanders.
| |
| | |
| [[Alexander Lubotzky|Lubotzky]], Phillips, and Sarnak (1988), Margulis (1988), and Morgenstern (1994) show how Ramanujan graphs can be constructed explicitly.<ref>Theorem 5.12 of {{harvtxt|Hoory|Linial|Widgerson|2006}}</ref> By a theorem of Friedman (2003), [[Random regular graph|random d-regular graphs]] on ''n'' vertices are almost Ramanujan, that is, they satisfy
| |
| | |
| :<math>\lambda \le 2\sqrt{d-1}+\epsilon</math>
| |
| | |
| with probability <math>1-o(1)</math> as ''n'' → ∞ tends to infinity.<ref>Theorem 7.10 of {{harvtxt|Hoory|Linial|Widgerson|2006}}</ref>
| |
| | |
| ==Applications and useful properties==
| |
| The original motivation for expanders is to build economical robust networks (phone or computer): an expander with bounded valence is precisely an asymptotic robust graph with number of edges growing linearly with size (number of vertices), for all subsets.
| |
| | |
| Expander graphs have found extensive applications in [[computer science]], in designing [[algorithm]]s, [[Expander code|error correcting codes]], [[Extractor (mathematics)|extractors]], [[pseudorandom generator]]s, [[sorting network]]s ({{harvtxt|Ajtai|Komlós|Szemerédi|1983}}) and robust [[computer network]]s. They have also been used in proofs of many important results in [[computational complexity theory]], such as [[SL (complexity)|SL]]=[[L (complexity)|L]] ({{harvtxt|Reingold|2008}}) and the [[PCP theorem]] ({{harvtxt|Dinur|2007}}). In [[cryptography]], expander graphs are used to construct [[hash function]]s.
| |
| | |
| The following are some properties of expander graphs that have proven useful in many areas.
| |
| | |
| ===Expander mixing lemma===
| |
| {{Main|Expander mixing lemma}}
| |
| The expander mixing lemma states that, for any two subsets of the vertices ''S'', ''T'' ⊆ ''V'', the number of edges between ''S'' and ''T'' is approximately what you would expect in a random ''d''-regular graph. The approximation is better, the smaller <math>\lambda=\max\{|\lambda_2|,|\lambda_n|\}</math> is. In a random ''d''-regular graph, as well as in an [[Erdős–Rényi model|Erdős–Rényi random graph]] with edge probability ''d''/''n'', we expect <math>\tfrac{d}{n} \cdot |S| \cdot |T|</math> edges between ''S'' and ''T''.
| |
| | |
| More formally, let ''E''(''S'', ''T'') denote the number of edges between ''S'' and ''T''. If the two sets are not disjoint, edges in their intersection are counted twice, that is,
| |
| | |
| :<math>E(S,T)=2|E(G[S\cap T])| + E(S\setminus T,T) + E(S,T\setminus S)</math>.
| |
| | |
| Then the expander mixing lemma says that the following inequality holds:
| |
| | |
| :<math>\left|E(S, T) - \frac{d \cdot |S| \cdot |T|}{n}\right| \leq d\lambda \sqrt{|S| \cdot |T|},</math>
| |
| | |
| where λ is the absolute value of the '''normalized''' second largest eigenvalue.
| |
| | |
| ===Expander walk sampling===
| |
| {{Main|Expander walk sampling}}
| |
| The [[Chernoff bound]] states that, when sampling many independent samples from a random variables in the range [−1, 1], with high probability the average of our samples is close to the expectation of the random variable. The expander walk sampling lemma, due to {{harvtxt|Ajtai|Komlós|Szemerédi|1987}} and {{harvtxt|Gillman|1998}}, states that this also holds true when sampling from a walk on an expander graph. This is particularly useful in the theory of [[derandomization]], since sampling according to an expander walk uses many fewer random bits than sampling independently.
| |
| | |
| ==See also==
| |
| *[[Algebraic connectivity]]
| |
| *[[Zig-zag product]]
| |
| | |
| ==Notes==
| |
| {{Reflist|colwidth=25em}}
| |
| | |
| ==References==
| |
| {{Refbegin|colwidth=25em}}
| |
| '''Textbooks and surveys'''
| |
| * {{cite book|title=The Probabilistic Method|first1=N.|last1=Alon|author1-link=Noga Alon|first2=Joel H.|last2=Spencer|author2-link=Joel Spencer|publisher=John Wiley & Sons|year=2011|edition=3rd|chapter=9.2. Eigenvalues and Expanders|ref=harv}}
| |
| * {{Citation | last=Chung |first=Fan R. K. | title=Spectral Graph Theory | series=CBMS Regional Conference Series in Mathematics | volume=92 | publisher=[[American Mathematical Society]] | year=1997 | isbn=0-8218-0315-8}}
| |
| * {{Citation | first1=Guiliana |last1=Davidoff | first2=Peter | last2=Sarnak | first3=Alain | last3=Valette | title=Elementary number theory, group theory and Ramanujan graphs | publisher=[[Cambridge University Press]] | series=LMS student texts | volume=55 | year=2003 | isbn=0-521-53143-8}}
| |
| * {{Citation | first1=Shlomo | last1=Hoory | first2=Nathan | last2=Linial | author2-link = Nati Linial | first3=Avi | last3=Widgerson | author3-link = Avi Wigderson | title=Expander graphs and their applications | journal= Bulletin (New series) of the American Mathematical Society | volume=43 | issue=4 | pages=439–561 | url=http://www.cs.huji.ac.il/~nati/PAPERS/expander_survey.pdf | year=2006 | doi = 10.1090/S0273-0979-06-01126-8}}
| |
| * {{Citation | first1=Mike |last1=Krebs | first2=Anthony | last2=Shaheen | title=Expander families and Cayley graphs: A beginner's guide | publisher=Oxford University Press | year=2011 | isbn=0-19-976711-4}}
| |
| '''Research articles'''
| |
| * {{Citation|last1=Ajtai|first1=M.|author1-link=Miklós Ajtai|last2=Komlós|first2=J.|author2-link=János Komlós (mathematician)|last3=Szemerédi|first3=E.|author3-link=Endre Szemerédi|chapter=An O(n log n) sorting network|title=Proceedings of the 15th Annual ACM Symposium on Theory of Computing|pages=1–9|year=1983|doi=10.1145/800061.808726|isbn=0-89791-099-0}}
| |
| * {{Citation
| |
| | first1=M. | last1=Ajtai
| |
| | first2=J. | last2=Komlós
| |
| | first3=E. | last3=Szemerédi
| |
| | chapter=Deterministic simulation in LOGSPACE
| |
| | title=Proceedings of the 19th Annual ACM Symposium on Theory of Computing
| |
| | pages=132–140
| |
| | year=1987
| |
| | work=ACM
| |
| | doi=10.1145/28395.28410
| |
| | isbn=0-89791-221-7
| |
| }}
| |
| * {{cite doi|10.1109/SFCS.2002.1181884}}
| |
| * {{Citation
| |
| |last1=Bobkov|first1=S.
| |
| |last2=Houdré|first2=C.
| |
| |last3=Tetali|first3=P.
| |
| |title=λ<sub>∞</sub>, vertex isoperimetry and concentration|journal=Combinatorica|volume=20|issue=2|year=2000|doi=10.1007/s004930070018|pages = 153–172}}.
| |
| * {{Citation|last=Dinur|first=Irit|title=The PCP theorem by gap amplification|journal=Journal of the ACM|volume=54|issue=3|year=2007|doi=10.1145/1236457.1236459|pages=12}}.
| |
| * {{Citation
| |
| | first=D. | last=Gillman
| |
| | title=A Chernoff Bound for Random Walks on Expander Graphs
| |
| | journal=SIAM Journal on Computing
| |
| | volume=27
| |
| | issue=4,
| |
| | pages=1203–1220
| |
| | year=1998
| |
| | publisher=Society for Industrial and Applied Mathematics
| |
| | doi=10.1137/S0097539794268765
| |
| }}
| |
| * {{Citation
| |
| | first=Oded
| |
| | last=Goldreich
| |
| | title=Basic Facts about Expander Graphs
| |
| | journal = Studies in Complexity and Cryptography
| |
| | year = 2011
| |
| | pages = 451–464
| |
| | doi = 10.1007/978-3-642-22670-0_30
| |
| | ref=harv
| |
| }}
| |
| * {{Citation|first=Omer|last=Reingold|authorlink=Omer Reingold|title=Undirected connectivity in log-space|journal=[[Journal of the ACM]]|year=2008|
| |
| volume=55|issue=4|pages=Article 17, 24 pages|doi=10.1145/1391289.1391291
| |
| }}
| |
| * {{Citation
| |
| |first=Amir
| |
| |last=Yehudayoff
| |
| |title=Proving expansion in three steps
| |
| |journal=[[ACM SIGACT News]]
| |
| |year=2012
| |
| |volume=43
| |
| |issue=3
| |
| |pages=67–84
| |
| |doi=10.1145/2421096.2421115
| |
| |ref=harv
| |
| }}
| |
| {{Refend}}
| |
| | |
| == External links ==
| |
| * [http://www.ams.org/notices/200407/what-is.pdf Brief introduction in Notices of the American Mathematical Society]
| |
| * [http://michaelnielsen.org/blog/archive/notes/expander_graphs.pdf Introductory paper by Michael Nielsen]
| |
| * [http://www.math.ias.edu/~boaz/ExpanderCourse/ Lecture notes from a course on expanders (by Nati Linial and Avi Wigderson)]
| |
| * [http://ttic.uchicago.edu/~prahladh/teaching/spring05/index.html Lecture notes from a course on expanders (by Prahladh Harsha)]
| |
| *[http://www.yann-ollivier.org/specgraph/specgraph.html Definition and application of spectral gap]
| |
| | |
| {{DEFAULTSORT:Expander Graph}}
| |
| [[Category:Graph families]]
| |