Plate notation: Difference between revisions
en>Benwing →Extensions: fix links |
en>Jonesey95 m Fixing "CS1 errors: ISSN" error in citation. |
||
Line 1: | Line 1: | ||
In [[geometry]], the '''Conway triangle notation''', named after [[John Horton Conway]], allows [[trigonometric functions]] of a [[triangle]] to be managed algebraically. Given a reference triangle whose sides are ''a'', ''b'' and ''c'' and whose corresponding internal [[angle]]s are ''A'', ''B'', and ''C'' then the Conway triangle notation is simply represented as follows: | |||
:<math> S = bc \sin A = ac \sin B = ab \sin C \,</math> | |||
where ''S'' = 2 × area of reference triangle and | |||
:<math> S_\varphi = S \cot \varphi . \,</math> | |||
in particular | |||
:<math> S_A = S \cot A = bc \cos A= \frac {b^2+c^2-a^2} {2}\,</math> | |||
:<math> S_B = S \cot B = ac \cos B= \frac {a^2+c^2-b^2} {2}\,</math> | |||
:<math> S_C = S \cot C = ab \cos C= \frac {a^2+b^2-c^2} {2}\,</math> | |||
:<math> S_\omega = S \cot \omega = \frac {a^2+b^2+c^2} {2}\,</math> where <math> \omega \,</math> is the [[Brocard angle]]. | |||
:<math> S_{\frac {\pi} {3}} = S \cot {\frac {\pi} {3}} = S \frac {\sqrt 3}{3} \,</math> | |||
:<math> S_{2\varphi} = \frac {S_\varphi^2 - S^2} {2S_\varphi} \quad\quad S_{ \frac {\varphi} {2}} = S_\varphi + \sqrt {S_\varphi^2 + S^2} \,</math> for values of <math> \varphi </math> where <math> 0 < \varphi < \pi \, </math> | |||
:<math> S_{\vartheta + \varphi} = \frac {S_\vartheta S_\varphi - S^2} {S_\vartheta + S_\varphi} \quad\quad S_{\vartheta - \varphi} = \frac {S_\vartheta S_\varphi + S^2} {S_\varphi - S_\vartheta} \, </math> | |||
Hence: | |||
:<math> \sin A = \frac {S} {bc} = \frac {S} {\sqrt {S_A^2 + S^2}} \quad\quad \cos A = \frac {S_A} {bc} = \frac {S_A} {\sqrt {S_A^2 + S^2}} \quad\quad \tan A = \frac {S} {S_A} \, </math> | |||
Some important identities: | |||
:<math> \sum_\text{cyclic} S_A = S_A+S_B+S_C = S_\omega \, </math> | |||
:<math> S^2 = b^2c^2 - S_A^2 = a^2c^2 - S_B^2 = a^2b^2 - S_C^2 \, </math> | |||
:<math> S_BS_C = S^2 - a^2S_A\quad\quad S_AS_C = S^2 - b^2S_B\quad\quad S_AS_B = S^2 - c^2S_C \, </math> | |||
:<math> S_AS_BS_C = S^2(S_\omega-4R^2)\quad\quad S_\omega=s^2-r^2-4rR \, </math> | |||
where ''R'' is the [[circumcenter|circumradius]] and ''abc'' = 2''SR'' and where ''r'' is the [[incenter]], <math> s= \frac{a+b+c}{2} \, </math> and <math> a+b+c = \frac {S} {r} \, </math> | |||
Some useful trigonometric conversions: | |||
:<math> \sin A \sin B \sin C = \frac {S} {4R^2} \quad\quad \cos A \cos B \cos C = \frac {S_\omega-4R^2} {4R^2} </math> | |||
:<math> \sum_\text{cyclic} \sin A = \frac {S} {2Rr} = \frac {s}{R} \quad\quad \sum_\text{cyclic} \cos A = \frac {r+R} {R} \quad\quad \sum_\text{cyclic} \tan A = \frac {S}{S_\omega-4R^2}=\tan A \tan B \tan C \, </math> | |||
Some useful formulas: | |||
:<math> \sum_\text{cyclic} a^2S_A = a^2S_A + b^2S_B + c^2 S_C = 2S^2 \quad\quad \sum_\text{cyclic} a^4 = 2(S_\omega^2-S^2) \, </math> | |||
:<math> \sum_\text{cyclic} S_A^2 = S_\omega^2 - 2S^2 \quad\quad \sum_\text{cyclic} S_BS_C = S^2 \quad\quad \sum_\text{cyclic} b^2c^2 = S_\omega^2 + S^2 \, </math> | |||
Some examples using Conway triangle notation: | |||
Let ''D'' be the distance between two points P and Q whose [[trilinear coordinates]] are ''p''<sub>''a''</sub> : ''p''<sub>''b''</sub> : ''p''<sub>''c''</sub> and ''q''<sub>''a''</sub> : ''q''<sub>''b''</sub> : ''q''<sub>''c''</sub>. Let ''K''<sub>''p''</sub> = ''ap''<sub>''a''</sub> + ''bp''<sub>''b''</sub> + ''cp''<sub>''c''</sub> and let ''K''<sub>''q''</sub> = ''aq''<sub>''a''</sub> + ''bq''<sub>''b''</sub> + ''cq''<sub>''c''</sub>. Then ''D'' is given by the formula: | |||
:<math> D^2= \sum_\text{cyclic} a^2S_A\left(\frac {p_a}{K_p} - \frac {q_a}{K_q}\right)^2 \, </math> | |||
Using this formula it is possible to determine OH, the distance between the circumcenter and the [[orthocenter]] as follows: | |||
For the circumcenter ''p''<sub>''a''</sub> = ''aS''<sub>''A''</sub> and for the orthocenter ''q''<sub>''a''</sub> = ''S''<sub>''B''</sub>''S''<sub>''C''</sub>/''a'' | |||
:<math> K_p= \sum_\text{cyclic} a^2S_A = 2S^2 \quad\quad K_q= \sum_\text{cyclic} S_BS_C = S^2 \,</math> | |||
Hence: | |||
:<math> | |||
\begin{align} | |||
D^2 & {} = \sum_\text{cyclic} a^2S_A\left(\frac {aS_A} {2S^2} - \frac {S_BS_C} {aS^2}\right)^2 \\ | |||
& {} = \frac {1} {4S^4} \sum_\text{cyclic} a^4S_A^3 - \frac {S_AS_BS_C} {S^4} \sum_\text{cyclic} a^2S_A + \frac {S_AS_BS_C} {S^4} \sum_\text{cyclic} S_BS_C \\ | |||
& {} = \frac {1} {4S^4} \sum_\text{cyclic} a^2S_A^2(S^2-S_BS_C) - 2(S_\omega-4R^2) + (S_\omega-4R^2) \\ | |||
& {} = \frac {1} {4S^2} \sum_\text{cyclic} a^2S_A^2 - \frac {S_AS_BS_C} {S^4} \sum_\text{cyclic} a^2S_A - (S_\omega-4R^2) \\ | |||
& {} = \frac {1} {4S^2} \sum_\text{cyclic} a^2(b^2c^2-S^2) - \frac {1} {2}(S_\omega-4R^2) -(S_\omega-4R^2) \\ | |||
& {} = \frac {3a^2b^2c^2} {4S^2} - \frac {1} {4} \sum_\text{cyclic} a^2 - \frac {3} {2}(S_\omega-4R^2) \\ | |||
& {} = 3R^2- \frac {1} {2} S_\omega - \frac {3} {2} S_\omega + 6R^2 \\ | |||
& {} = 9R^2- 2S_\omega. | |||
\end{align} | |||
</math> | |||
This gives: | |||
:<math> OH = \sqrt{9R^2- 2S_\omega \,}.</math> | |||
==References== | |||
* {{mathworld|urlname=ConwayTriangleNotation|title=Conway Triangle Notation}} | |||
[[Category:Triangle geometry]] | |||
[[Category:Trigonometry]] |
Revision as of 06:28, 27 November 2013
In geometry, the Conway triangle notation, named after John Horton Conway, allows trigonometric functions of a triangle to be managed algebraically. Given a reference triangle whose sides are a, b and c and whose corresponding internal angles are A, B, and C then the Conway triangle notation is simply represented as follows:
where S = 2 × area of reference triangle and
in particular
- where is the Brocard angle.
Hence:
Some important identities:
where R is the circumradius and abc = 2SR and where r is the incenter, and
Some useful trigonometric conversions:
Some useful formulas:
Some examples using Conway triangle notation:
Let D be the distance between two points P and Q whose trilinear coordinates are pa : pb : pc and qa : qb : qc. Let Kp = apa + bpb + cpc and let Kq = aqa + bqb + cqc. Then D is given by the formula:
Using this formula it is possible to determine OH, the distance between the circumcenter and the orthocenter as follows:
For the circumcenter pa = aSA and for the orthocenter qa = SBSC/a
Hence:
This gives:
References
- 22 year-old Systems Analyst Rave from Merrickville-Wolford, has lots of hobbies and interests including quick cars, property developers in singapore and baking. Always loves visiting spots like Historic Monuments Zone of Querétaro.
Here is my web site - cottagehillchurch.com