Pre-measure: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
en>Boriaj
No edit summary
 
en>Nocipher
Extension theorem: Apparently the parser only likes subscript i...
Line 1: Line 1:
== Louis Vuitton Belgie Consistent met dat verhaal ==
In [[formal language theory]], a '''cone''' is a set of [[formal language]]s that has some desirable [[closure (mathematics)|closure]] properties enjoyed by some well-known sets of languages, in particular by the families of [[regular language]]s, [[context-free language]]s and the [[recursively enumerable language]]s.<ref>{{harvtxt|Ginsburg|Greibach|1967}}</ref> The concept of a cone is a more abstract notion that subsumes all of these families. A similar notion is the '''faithful cone''', having somewhat relaxed conditions. For example, the [[context-sensitive language]]s do not form a cone, but still have the required properties to form a faithful cone.


Consistent met dat verhaal, het leger snel instated een interim-voorzitter afkomstig uit de rechterlijke macht, die op zijn beurt benoemde een regering bestaande uit 34 ministers. Iedereen bij Belastingplichtigen voor Common Sense waren blij te zien de farm bill verslagen, maar de nederlaag van de rekening was een vrij goede indicatie [http://louisvuittonbelgie.presdetilff.be/ Louis Vuitton Belgie] van hoe moeilijk het is om genoeg stemmen bij elkaar te krijgen om iets, met name wetgeving die Washington bedrijf gaat gewoon passeren, via de Huis van Afgevaardigden ... <br><br>Eerlijk gezegd, ik zie niet in wat er zo geweldig aan Ender toch. Hij vermoedde dat ze aan het bouwen waren atoombommen, en hij schreef aan Sovjet-leider Jozef Stalin in april 1942. "Ik denk niet dat wat de instelling is, is te groot voor Nick," zei aanvallende coördinator Pat Shurmur. Volgens Een geschiedenis van Griekenland: van de vroegste tijden tot de Romeinse verovering, door Sir William Smith, George Washington GreeneFrom het Forum "Studenten van de Semitische talen ontlenen de naam Kadmos van de wortel kadm wat betekent" vooruit "," voor ", . <br><br>Sprekend tot Megyn Kelly over hoorzitting van het Hooggerechtshof over Proposition 8, O'Reilly die eerder heeft vergeleken homohuwelijk te bestialiteit leek te zijn "geëvolueerd" over het onderwerp. En Europa zetten zware druk op de belangrijkste Syrische oppositiegroep een lang uitgestelde vredesconferentie gericht op het beëindigen van de Syrische burgeroorlog te wonen, ook al akkoord met de gesprekken kon onherstelbaar splitsing van de reeds gefragmenteerde [http://timberlandbelgie.presdetilff.be/ Timberland Schoenen] oppositie in ballingschap te sluiten ... <br><br>(Witte haaien zijn geclassificeerd als sub volwassenen bij het bereiken van ongeveer 8 9 meter in lengte en hun dieet focus verschuift van [http://jordansdames.ecf3c2000.nl/ Jordans Nederland] het eten van vis tot overwegend zeezoogdieren. Had ik dit bepaalde paar zwarte broek die ik [http://raybanbelgie.presdetilff.be/ Ray Ban Gent] hield voor het werk. <br><br>Ik doe dit omdat mijn vrienden zijn homofoob mormonen. Ik wil om het te veranderen en schakelen tussen de trap klimmer, loopband en elliptische. Gulf of Maine kabeljauwvangst wordt verminderd bijna 80 procent ten opzichte van nummers van vorig jaar voor drie jaar, en Georges Bank met 61 procent volgend jaar. "Daar hebben we het potentieel voor een aantal centimeter sneeuw." De sneeuw zal taper off middernacht vrijdag, maar gladde omstandigheden kan een probleem blijven tot zaterdag ochtend als de temperatuur daalt in de tieners tijdens de overnight.Today 's weer wordt regenachtig zijn in tijden, . <br><br>In plaats van verdeeldheid, heeft de sterke religieuze aanwezigheid in de Verenigde Staten militair een verenigend effect gehad. Eerder woensdag, een Al-Qaeda geïnspireerde groep genaamd Ansar Beit al Maqdis of the Champions van Jeruzalem, zei dat het achter de zelfmoordaanslag op de "vergieten van onschuldig Moslim bloed" wreken in de handen van de Egyptische "afvallige regime" een verwijzing naar de .<ul>
The terminology ''cone'' has a French origin. In the American oriented literature one usually speaks of a ''full trio''. The ''trio'' corresponds to the faithful cone.
 
 
  <li>[http://verdamilio.net/tonio/spip.php?article1960/ http://verdamilio.net/tonio/spip.php?article1960/]</li>
==Definition==
 
A cone is a non-empty family <math>\mathcal{S}</math> of languages such that, for any <math>L \in \mathcal{S}</math> over some alphabet <math>\Sigma</math>,
  <li>[http://f1fanclub.com.au/activity/p/285558/ http://f1fanclub.com.au/activity/p/285558/]</li>
* if <math>h</math> is a [[homomorphism]] from <math>\Sigma^\ast</math> to some <math>\Delta^\ast</math>, the language <math>h(L)</math> is in <math>\mathcal{S}</math>;
 
* if <math>h</math> is a homomorphism from some <math>\Delta^\ast</math> to <math>\Sigma^\ast</math>, the language <math>h^{-1}(L)</math> is in <math>\mathcal{S}</math>;
  <li>[http://enseignement-lsf.com/spip.php?article64#forum23991004 http://enseignement-lsf.com/spip.php?article64#forum23991004]</li>
* if <math>R</math> is any regular language over <math>\Sigma</math>, then <math>L\cap R</math> is in <math>\mathcal{S}</math>.
 
 
  <li>[http://stavers.ws/Forum/read.php?5,256398 http://stavers.ws/Forum/read.php?5,256398]</li>
The family of all regular languages is contained in any cone.
 
 
  <li>[http://www.dp1234567.com/home.php?mod=space&uid=269399 http://www.dp1234567.com/home.php?mod=space&uid=269399]</li>
If one restricts the definition to homomorphisms that do not introduce the empty word <math>\lambda</math> then one speaks of a ''faithful cone''; the inverse homomorphisms are not restricted. Within the [[Chomsky hierarchy]], the regular languages, the context-free languages, and the [[recursively enumerable language]]s are all cones, whereas the context-sensitive languages and the recursive languages are only faithful cones.
 
 
</ul>
==Relation to Transducers==
 
A [[finite state transducer]] is a finite state automaton that has both input and output. It defines a transduction <math>T</math>, mapping a language <math>L</math> over the input alphabet into another language <math>T(L)</math> over the output alphabet. Each of the cone operations (homomorphism, inverse homomorphism, intersection with a regular language) can be implemented using a finite state transducer. And, since finite state transducers are closed under composition, every sequence of cone operations can be performed by a finite state transducer.
 
Conversely, every finite state transduction <math>T</math> can be decomposed into cone operations. In fact, there exists a normal form for this decomposition,<ref>{{harvtxt|Nivat|1968}}</ref> which is commonly known as ''Nivat's Theorem'':<ref>cf. {{harvtxt|Mateescu|Salomaa|1997}}</ref>
Namely, each such <math>T</math> can be effectively decomposed as
<math>T(L) = g(h^{-1}(L) \cap R)</math>, where <math>g, h</math> are homomorphisms, and <math>R</math> is a regular language depending only on <math>T</math>.
 
Altogether, this means that a family of languages is a cone if it is closed under finite state transductions. This is a very powerful set of operations. For instance one easily writes a (nondeterministic) finite state transducer with alphabet <math>\{a,b\}</math> that removes every second <math>b</math> in words of even length (and does not change words otherwise). Since the context-free languages form a cone, they are closed under this exotic operation.
 
==See also==
* [[Abstract family of languages]]
 
==Notes==
{{Reflist}}
 
==References==
* {{cite conference
  | first1 = Seymour
  | last1 = Ginsburg
  | first2 = Sheila
  | last2= Greibach
  | title=Abstract Families of Languages
  | booktitle = Conference Record of 1967 Eighth Annual Symposium on Switching and Automata Theory, 18–20 October 1967, Austin, Texas, USA
  | year = 1967
  | pages= 128–139
  |publisher = IEEE
}}
 
* {{cite doi| 10.5802/aif.287}}
 
*[[Seymour Ginsburg]], ''Algebraic and automata theoretic properties of formal languages'', North-Holland, 1975, ISBN 0-7204-2506-9.
 
* John E. Hopcroft and Jeffrey D. Ullman, ''[[Introduction to Automata Theory, Languages, and Computation]]'', Addison-Wesley Publishing, Reading Massachusetts, 1979. ISBN 0-201-02988-X. Chapter 11: Closure properties of families of languages.
 
* {{cite book |last1=Mateescu | first1=Alexandru |last2=Salomaa|first2=Arto |editor1-first=Grzegorz| editor1-last=Rozenberg|editor2-first=Arto| editor2-last=Salomaa |title=Handbook of Formal Languages. Volume I: Word, language, grammar |publisher=Springer-Verlag |year=1997 |pages=175–252 |chapter=Chapter 4: Aspects of Classical Language Theory |isbn=3-540-61486-9}}
 
==External links==
*[http://eom.springer.de/T/t110060.htm Encyclopedia of mathematics: Trio], Springer.
 
[[Category:Formal languages]]

Revision as of 02:50, 12 September 2013

In formal language theory, a cone is a set of formal languages that has some desirable closure properties enjoyed by some well-known sets of languages, in particular by the families of regular languages, context-free languages and the recursively enumerable languages.[1] The concept of a cone is a more abstract notion that subsumes all of these families. A similar notion is the faithful cone, having somewhat relaxed conditions. For example, the context-sensitive languages do not form a cone, but still have the required properties to form a faithful cone.

The terminology cone has a French origin. In the American oriented literature one usually speaks of a full trio. The trio corresponds to the faithful cone.

Definition

A cone is a non-empty family 𝒮 of languages such that, for any L𝒮 over some alphabet Σ,

The family of all regular languages is contained in any cone.

If one restricts the definition to homomorphisms that do not introduce the empty word λ then one speaks of a faithful cone; the inverse homomorphisms are not restricted. Within the Chomsky hierarchy, the regular languages, the context-free languages, and the recursively enumerable languages are all cones, whereas the context-sensitive languages and the recursive languages are only faithful cones.

Relation to Transducers

A finite state transducer is a finite state automaton that has both input and output. It defines a transduction T, mapping a language L over the input alphabet into another language T(L) over the output alphabet. Each of the cone operations (homomorphism, inverse homomorphism, intersection with a regular language) can be implemented using a finite state transducer. And, since finite state transducers are closed under composition, every sequence of cone operations can be performed by a finite state transducer.

Conversely, every finite state transduction T can be decomposed into cone operations. In fact, there exists a normal form for this decomposition,[2] which is commonly known as Nivat's Theorem:[3] Namely, each such T can be effectively decomposed as T(L)=g(h1(L)R), where g,h are homomorphisms, and R is a regular language depending only on T.

Altogether, this means that a family of languages is a cone if it is closed under finite state transductions. This is a very powerful set of operations. For instance one easily writes a (nondeterministic) finite state transducer with alphabet {a,b} that removes every second b in words of even length (and does not change words otherwise). Since the context-free languages form a cone, they are closed under this exotic operation.

See also

Notes

43 year old Petroleum Engineer Harry from Deep River, usually spends time with hobbies and interests like renting movies, property developers in singapore new condominium and vehicle racing. Constantly enjoys going to destinations like Camino Real de Tierra Adentro.

References

  • 55 years old Systems Administrator Antony from Clarence Creek, really loves learning, PC Software and aerobics. Likes to travel and was inspired after making a journey to Historic Ensemble of the Potala Palace.

    You can view that web-site... ccleaner free download
  • Seymour Ginsburg, Algebraic and automata theoretic properties of formal languages, North-Holland, 1975, ISBN 0-7204-2506-9.
  • 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.

    My blog: http://www.primaboinca.com/view_profile.php?userid=5889534

External links