Tensor-hom adjunction: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
en>FrescoBot
m Bot: fixing section wikilinks and minor changes
 
Fixed codomain on counit identity calculation: maps into Y tensor X, not just Y.
 
Line 1: Line 1:
Il fait chaud! . uste redresser la petite de cheeux �� peu. Les cheeux seront sec apr��s redressement aec le lisseur GHD. Si quelques cheeux deiennent secs quand ous n'aez pas terminer le redressement de ce groupe, Si il ya un probl��me aec l'achat d'un lisseur GHD, c'est le fait qu'ils ont tellement de choix fabuleux, il est difficile de choisir un seul. Une des caract��ristiques les plus polyalents que ous pouez appr��cier lorsque ous achetez un lisseur GHD est le fait qu'ils ont barils arrondis, ce qui n'est pas quelque chose que ous errez dans d'autres marques de lisseurs.
The '''turbulent Prandtl number''' ('''Pr<sub>t</sub>''') is a [[Dimensionless quantity|non-dimensional]] term defined as the ratio between the momentum [[Eddy-diffusion|eddy diffusivity]] and the heat transfer eddy diffusivity.  It is useful for solving the [[Convection|heat transfer]] problem of turbulent boundary layer flows.  The simplest model for Pr<sub>t</sub> is the [[Reynolds analogy]], which yields a turbulent Prandtl number of 1.  From experimental data, Pr<sub>t</sub> has an average value of 0.85, but ranges from 0.7 to 0.9 depending on the [[Prandtl number]] of the fluid in question.


  faire les Lisseur GHD doux et maniable, et aident �� prot��ger la structure interne de l'arbre GHD de dommages en agissant comme une barri��re. Ce type de climatiseur doit ��tre utilis�� chaque fois que les Lisseur GHD est la��. Lors du choix d'un appareil de conditionnement instant, comparer ceux qui contiennent une combinaison des ingr��dients tels que la lanoline, rincer abondamment jusqu'�� ce que l'eau soit claire.
== Definition ==
The introduction of eddy diffusivity and subsequently the turbulent Prandtl number works as a way to define a simple relationship between the extra shear stress and heat flux that is present in turbulent flow. If the momentum and thermal eddy diffusivities are zero (no apparent turbulent shear stress and heat flux), then the turbulent flow equations reduce to the laminar equations.  We can define the eddy diffusivities for momentum transfer <math>\epsilon_M</math> and heat transfer <math>\epsilon_H</math> as<br /><math>-\overline{u'v'} = \epsilon_M \frac{\partial \bar{u}}{\partial y}</math> and <math>-\overline{v'T'} = \epsilon_H \frac{\partial \bar{T}}{\partial y}</math><br />where <math>-\overline{u'v'}</math> is the apparent turbulent shear stress and <math>-\overline{v'T'}</math> is the apparent turbulent heat flux.<br />The turbulent Prandtl number is then defined as<br /><math>\mathrm{Pr}_\mathrm{t} = \frac{\epsilon_M}{\epsilon_H}.</math>


() Quelle est la meilleure fa?on d'appliquer conditionneur? . Apr��s le shampooing le GHD Noir et rincer soigneusement, presser doucement l'ensemble de l'exc��s d'eau de la GHD Noir Edition Limit��e Lisseur-IV Styler MK. Ces escrocs en ligne sont des experts �� ous conaincre de endre leur produit de l'argent pour eux-m��mes. onc ne comptez pas compl��tement sur leurs paroles. Vous ne saez jamais si ous faites affaire aec le endeur de faux ou l'original, sauf si ous faites la recherche ous-m��me.
The turbulent Prandtl number has been shown to not generally equal unity (e.g. Malhotra and Kang, 1984; Kays, 1994; McEligot and Taylor, 1996; and Churchill, 2002). It is a strong function of the moleculer Prandtl number amongst other parameters and the Reynolds Analogy is not applicable when the molecular Prandtl number differs significantly from unity as determined by Malhotra and Kang;<ref>[[Malhotra, Ashok]], & KANG, S. S. 1984. Turbulent Prandtl number in circular pipes. Int. J. Heat and Mass Transfer, 27, 2158-2161</ref> and elaborated by McEligot and Taylor<ref>McEligot, D. M. & Taylor, M. F. 1996, The turbulent Prandtl number in the near-wall region for Low-Prandtl-number gas mixtures. Int. J. Heat Mass Transfer., 39, pp 1287--1295</ref> and Churchill <ref>Churchill, S. W. 2002; A Reinterpretation of the Turbulent Prandtl Number. Ind. Eng. Chem. Res. , 41, 6393-6401. CLAPP, R. M. 1961.</ref>


onc, lisseur cheeux ghd ous deez acqu��rir tous os produits d'assurance d'une soci��t�� �� assurer que ous pouez obtenir le plaisir du plus grand potentiel de r��duction des prix. Malgr�� le fait que de nombreuses personnes se sentent �� l'aise aec la conduite de tous les montants minimaux d'assurance n��cessaire par la loi de l'automobile en Californie, thats pas la situation aec tous les automobilistes. Pour une personne qui cherche un protection compl��te estimation de l'assurance automobile en Californie, ils doient er Soyez conscient de ce genre de couerture coniendra id��al de ses besoins actuels.
== Application ==
Turbulent momentum boundary layer equation: <br /><math>\bar {u} \frac{\partial \bar{u}}{\partial x} + \bar {v} \frac{\partial \bar{u}}{\partial y} = -\frac{1}{\rho} \frac{d\bar{P}}{dx} + \frac{\partial}{\partial y} \left [(\nu \frac{\partial \bar{u}}{\partial y} - \overline{u'v'}) \right].</math><br />Turbulent thermal boundary layer equation,<br /><math>\bar {u} \frac{\partial \bar{T}}{\partial x} + \bar {v} \frac{\partial \bar{T}}{\partial y} = \frac{\partial}{\partial y} \left (\alpha \frac{\partial \bar{T}}{\partial y} - \overline{v'T'} \right).</math>
Substituting the eddy diffusivities into the momentum and thermal equations yields<br /><math>\bar {u} \frac{\partial \bar{u}}{\partial x} + \bar {v} \frac{\partial \bar{u}}{\partial y} = -\frac{1}{\rho} \frac{d\bar{P}}{dx} + \frac{\partial}{\partial y} \left [(\nu + \epsilon_M) \frac{\partial \bar{u}}{\partial y}\right]</math><br />and<br /><math>\bar {u} \frac{\partial \bar{T}}{\partial x} + \bar {v} \frac{\partial \bar{T}}{\partial y} = \frac{\partial}{\partial y} \left [(\alpha + \epsilon_H) \frac{\partial \bar{T}}{\partial y}\right].</math><br />Substitute into the thermal equation using the definition of the turbulent Prandtl number to get <br /><math>\bar {u} \frac{\partial \bar{T}}{\partial x} + \bar {v} \frac{\partial \bar{T}}{\partial y} = \frac{\partial}{\partial y} \left [(\alpha + \frac{\epsilon_M}{\mathrm{Pr}_\mathrm{t}}) \frac{\partial \bar{T}}{\partial y}\right].</math>


  m��me lorsque ous inolontairement n��gligence de transformer l'��l��ment hors tension. Comme sensiblement comme le poss��de toutes les fonctions dont ous aez besoin, ous pouez ��galement examiner d'autres solutions comparables tels que les d��frisants Chi. si ous oulez ous d��elopper s'il ous pla?t enez et faire la surprise GHD peut ous qui semblent tout droit et brillant Vous ne oulez pas faire l'exp��rience par le biais d'une longue attente dans un salon ou ont �� offrir aux r��ceptionnistes grossier pour un rendez-ous aec un styliste pour que ous puissiez obtenir que les cheeux raides et soyeux ous aez souent souhait��.
== Consequences ==
In the special case where the [[Prandtl number]] and turbulent Prandtl number both equal unity (as in the [[Reynolds analogy]]), the velocity profile and temperature profiles are identical. This greatly simplifies the solution of the heat transfer problem. If the Prandtl number and turbulent Prandtl number are different from unity, then a solution is possible by knowing the turbulent Prandtl number so that one can still solve the momentum and thermal equations.


Vous pouez obtenir la faire le traail effectu�� par ous-m��me. Une fois la motoneige a se mettre en mouement, ��tre s?r qu'il continue �� aller jusqu'�� ce qu'il soit sur la pi��ce sup��rieure de la terre pour l'emp��cher de se faire pi��ger une fois de plus. Cessez d��placez seulement une fois que ous ��tes sur un sentier de motoneige emball�� ou soign�� o�� le tra?neau sera probablement sur un terrain facile. Inutile de dire que la meilleure ��tape pour obtenir est de chercher des orni��res potentiels et les zones exactement o�� ous motoneige a une chance d'obtenir pi��g��.<br><br>
In a general case of three-dimensional turbulence, the concept of eddy viscosity and eddy diffusivity are not valid. Consequently, the turbulent Prandtl number has no meaning.<ref>{{cite doi|10.1115/1.2911398}}</ref>


If you have almost any concerns concerning in which in addition to how you can employ [http://tinyurl.com/llahzns GHD lisseur], you are able to e mail us from the web site.
== References ==
{{reflist}}
 
==Books==
*{{cite book | title=Convective Heat and Mass Transfer, Fourth Edition| last=Kays| first=William| coauthors=Crawford, M., Weigand, B.| year=2005| publisher=McGraw-Hill | isbn=978-0-07-246876-2}}
 
{{NonDimFluMech}}
 
[[Category:Convection]]
[[Category:Dimensionless numbers of fluid mechanics]]
[[Category:Fluid dynamics]]
[[Category:Heat transfer]]

Latest revision as of 19:11, 16 October 2013

The turbulent Prandtl number (Prt) is a non-dimensional term defined as the ratio between the momentum eddy diffusivity and the heat transfer eddy diffusivity. It is useful for solving the heat transfer problem of turbulent boundary layer flows. The simplest model for Prt is the Reynolds analogy, which yields a turbulent Prandtl number of 1. From experimental data, Prt has an average value of 0.85, but ranges from 0.7 to 0.9 depending on the Prandtl number of the fluid in question.

Definition

The introduction of eddy diffusivity and subsequently the turbulent Prandtl number works as a way to define a simple relationship between the extra shear stress and heat flux that is present in turbulent flow. If the momentum and thermal eddy diffusivities are zero (no apparent turbulent shear stress and heat flux), then the turbulent flow equations reduce to the laminar equations. We can define the eddy diffusivities for momentum transfer ϵM and heat transfer ϵH as
uv=ϵMu¯y and vT=ϵHT¯y
where uv is the apparent turbulent shear stress and vT is the apparent turbulent heat flux.
The turbulent Prandtl number is then defined as
Prt=ϵMϵH.

The turbulent Prandtl number has been shown to not generally equal unity (e.g. Malhotra and Kang, 1984; Kays, 1994; McEligot and Taylor, 1996; and Churchill, 2002). It is a strong function of the moleculer Prandtl number amongst other parameters and the Reynolds Analogy is not applicable when the molecular Prandtl number differs significantly from unity as determined by Malhotra and Kang;[1] and elaborated by McEligot and Taylor[2] and Churchill [3]

Application

Turbulent momentum boundary layer equation:
u¯u¯x+v¯u¯y=1ρdP¯dx+y[(νu¯yuv)].
Turbulent thermal boundary layer equation,
u¯T¯x+v¯T¯y=y(αT¯yvT). Substituting the eddy diffusivities into the momentum and thermal equations yields
u¯u¯x+v¯u¯y=1ρdP¯dx+y[(ν+ϵM)u¯y]
and
u¯T¯x+v¯T¯y=y[(α+ϵH)T¯y].
Substitute into the thermal equation using the definition of the turbulent Prandtl number to get
u¯T¯x+v¯T¯y=y[(α+ϵMPrt)T¯y].

Consequences

In the special case where the Prandtl number and turbulent Prandtl number both equal unity (as in the Reynolds analogy), the velocity profile and temperature profiles are identical. This greatly simplifies the solution of the heat transfer problem. If the Prandtl number and turbulent Prandtl number are different from unity, then a solution is possible by knowing the turbulent Prandtl number so that one can still solve the momentum and thermal equations.

In a general case of three-dimensional turbulence, the concept of eddy viscosity and eddy diffusivity are not valid. Consequently, the turbulent Prandtl number has no meaning.[4]

References

43 year old Petroleum Engineer Harry from Deep River, usually spends time with hobbies and interests like renting movies, property developers in singapore new condominium and vehicle racing. Constantly enjoys going to destinations like Camino Real de Tierra Adentro.

Books

  • 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.

    My blog: http://www.primaboinca.com/view_profile.php?userid=5889534

Template:NonDimFluMech

  1. Malhotra, Ashok, & KANG, S. S. 1984. Turbulent Prandtl number in circular pipes. Int. J. Heat and Mass Transfer, 27, 2158-2161
  2. McEligot, D. M. & Taylor, M. F. 1996, The turbulent Prandtl number in the near-wall region for Low-Prandtl-number gas mixtures. Int. J. Heat Mass Transfer., 39, pp 1287--1295
  3. Churchill, S. W. 2002; A Reinterpretation of the Turbulent Prandtl Number. Ind. Eng. Chem. Res. , 41, 6393-6401. CLAPP, R. M. 1961.
  4. Template:Cite doi