Admissible representation: Difference between revisions
en>TakuyaMurata |
en>TAnthony m Update deprecated cite parameters using AWB |
||
Line 1: | Line 1: | ||
The [[maximum entropy method]] applied to [[spectral density estimation]]. The overall idea is that the maximum [[entropy rate]] [[stochastic process]] that satisfies the given constant [[autocorrelation]] and [[variance]] constraints, is a linear [[Gauss-Markov process]] with [[i.i.d.]] zero-mean, [[Gaussian function|Gaussian]] input. | |||
==Method description== | |||
The maximum entropy rate, [[strongly stationary]] [[stochastic process]] <math>x_i</math> with [[autocorrelation]] sequence <math>R_{xx}(k), k = 0,1, \dots P</math> satisfying the constraints: | |||
:<math>R_{xx}(k) = \alpha_k</math> | |||
for arbitrary constants <math>\alpha_k</math> is the <math>P</math>-th order, linear Markov chain of the form: | |||
:<math>x_i = -\sum_{k=1}^P a_k x_{i-k} + y_i</math> | |||
where the <math>y_i</math> are zero mean, [[i.i.d.]] and normally-distributed of finite variance <math>\sigma^2</math>. | |||
==Spectral estimation== | |||
Given the <math>a_k</math>, the square of the absolute value of the [[transfer function]] of the linear Markov chain model can be evaluated at any required frequency in order to find the [[power spectrum]] of <math>x_i</math>. | |||
==References== | |||
* Cover, T. and Thomas, J. (1991) Elements of Information Theory, John Wiley and Sons, Inc. | |||
== External links == | |||
*kSpectra Toolkit for Mac OS X from [http://www.spectraworks.com SpectraWorks.] | |||
[[Category:Entropy]] | |||
[[Category:Information theory]] | |||
[[Category:Signal processing]] | |||
[[Category:Time series analysis]] |
Latest revision as of 08:45, 9 December 2013
The maximum entropy method applied to spectral density estimation. The overall idea is that the maximum entropy rate stochastic process that satisfies the given constant autocorrelation and variance constraints, is a linear Gauss-Markov process with i.i.d. zero-mean, Gaussian input.
Method description
The maximum entropy rate, strongly stationary stochastic process with autocorrelation sequence satisfying the constraints:
for arbitrary constants is the -th order, linear Markov chain of the form:
where the are zero mean, i.i.d. and normally-distributed of finite variance .
Spectral estimation
Given the , the square of the absolute value of the transfer function of the linear Markov chain model can be evaluated at any required frequency in order to find the power spectrum of .
References
- Cover, T. and Thomas, J. (1991) Elements of Information Theory, John Wiley and Sons, Inc.
External links
- kSpectra Toolkit for Mac OS X from SpectraWorks.