Derivation of the Navier–Stokes equations: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
 
Conservation laws: The specification that the sinks are positive is needed to explain the minus sign on the integral of $Q$.
Line 1: Line 1:
Maintenant, si otre GHD d��fectueux est ?g�� de plus de - ans puis suiez ces instructions de r��paration, un.) Tenez otre GHD aec un cheeu ou de la bande ��lastique de sorte que les plaques sont pouss��s ensemble, ce sera plus facile pour ous de porter le reste du serice de r��paration GHD. Equip�� d'une technologie tr��s aanc��e des redresseurs GHD cheeux sont forts et les plus durables disponibles. CONSEILS pour redresser os cheeux Peignez toujours os cheeux en utilisant un peigne large bouche Appliquer une protection pul��risation thermique sur les cheeux aant de se redresser.
In the [[mathematics]] of [[signal processing]], the '''harmonic wavelet transform''', introduced by [[David Edward Newland]] in 1993, is a [[wavelet]]-based linear transformation of a given function into a [[time-frequency representation]]. It combines advantages of the [[short-time Fourier transform]] and the [[continuous wavelet transform]]. It can be expressed in terms of repeated [[Fourier transform]]s, and its discrete analogue can be computed efficiently using a [[fast Fourier transform]] algorithm.


Ajustez la mise correspondant �� otre texture de cheeux la temp��rature. toujours redresser petites sections de cheeux, couper le reste ci-dessus. Vous pouez obtenir la faire le traail soi-m��me effectu��e. Tout ce que ous deez aoir et sont l'aspect lisse est le ?tre. Vous pouez aller en ligne et d��courez la meilleure offre pour un produit ou un serice GHD sans aoir �� quitter le confort de otre propre maison. Comme aec la plupart des produits modernes obtenus, lisseur GHD arrier dans une s��lection de solutions de rechange.
== Harmonic wavelets ==


parfois aussi appel��s des actiit��s sporties ��hicules, supercross utilise motos. Ce qui est exceptionnel sur ces motos est qu'ils ne sont pas ceux que ous oyez constamment sur la route, ils sont des ��los tout-terrain sp��cialement faites pour les courses off-road. outre d'appliquer motocyclettes hors route, car il peut ous donner le meilleur quelle que soit la tension peut ��tre dans ce domaine. En plus de cela, il ya deux fonctionnalit��s suppl��mentaires qui fonctionnent comme le rappel dans les deux situations diff��rentes.
The transform uses a family of "harmonic" wavelets indexed by two integers ''j'' (the "level" or "order") and ''k'' (the "translation"), given by <math>w(2^j t - k) \!</math>, where


Une alarme qui a ��t�� r��is��e dans un ton plus agr��able de la oix qui ous r��eille pour le traail et une autre alarme qui est sous la forme de bip qui ous fait saoir quand il est chaud. Il ya aussi deux fonctions les plus utiles - un mode de sommeil pour ceux qui oublient de tourner leur dispositif de poil et aussi un mode de frisson qui prot��ge le fer de condensation dans des conditions plus fra?
:<math>w(t) = \frac{e^{i4\pi t} - e^{i 2\pi t}}{i 2\pi t} .</math>


ches. est un atout pour obtenir une femme qui eut regarder magnifique. M��me la recherche commune dame peut pousser �� ��tre un attrait GHD utilisant un d��frisant pour cheeux cr��pus, cheeux ��l��ment de traitement, et aussi cr��pus outil de coupe de cheeux de GHD. GHD est une longue ��tendue durable nom de marque bien reconnue, e cette fa?on, otre hairstraightener sera �� l'abri de probl��mes faisable en raison de la condensation sur la plaque.
These functions are orthogonal, and their Fourier transforms are a square [[window function]] (constant in a certain octave band and zero elsewhere). In particular, they satisfy:


Et enfin, le lisseur cheeux GHD a une m��thode de tension du ��hicule. ames Marnley d��clare ensuite il a faire le traail parfaitement sur toute forme de courant alternatif de sorte que ous pouez utiliser otre unit�� de magnificence GHD n'importe quel endroit dans le monde entier. . Lire technologie Blackberry Pearl G: le premier BlackBerry sans un QWERTY! mai Aril Fabricant de t��l��phone de Research in Motion, c��l��bre pour sa gamme de t��l��phones Blackberry aec les claiers de style qwerty annonc�� qu'ils publieront une mise �� jour pr��c��demment populaire Blackberry combin��.<br><br>
:<math>\int_{-\infty}^\infty w^*(2^j t - k) \cdot w(2^{j'} t - k') \, dt = \frac{1}{2^j} \delta_{j,j'} \delta_{k,k'}</math>
:<math>\int_{-\infty}^\infty w(2^j t - k) \cdot w(2^{j'} t - k') \, dt = 0</math>


If you liked this report and you would like to get far more information with regards to [http://tinyurl.com/m63r8fp http://tinyurl.com/m63r8fp] kindly take a look at the website.
where "*" denotes [[complex conjugation]] and <math>\delta</math> is [[Kronecker's delta]].
 
As the order ''j'' increases, these wavelets become more localized in Fourier space (frequency) and in higher frequency bands, and conversely become less localized in time (''t'').  Hence, when they are used as a [[basis (linear algebra)|basis]] for expanding an arbitrary function, they represent behaviors of the function on different timescales (and at different time offsets for different ''k'').
 
However, it is possible to combine all of the negative orders (''j'' &lt; 0) together into a single family of "scaling" functions <math>\varphi(t - k)</math> where
 
:<math>\varphi(t) = \frac{e^{i2\pi t} - 1}{i 2\pi t}.</math>
 
The function ''&phi;'' is orthogonal to itself for different ''k'' and is also orthogonal to the wavelet functions for non-negative ''j'':
 
:<math>\int_{-\infty}^\infty \varphi^*(t - k) \cdot \varphi(t - k') \, dt = \delta_{k,k'}</math>
:<math>\int_{-\infty}^\infty w^*(2^j t - k) \cdot \varphi(t - k') \, dt = 0\text{ for }j \geq 0</math>
:<math>\int_{-\infty}^\infty \varphi(t - k) \cdot \varphi(t - k') \, dt = 0</math>
:<math>\int_{-\infty}^\infty w(2^j t - k) \cdot \varphi(t - k') \, dt = 0\text{ for }j \geq 0.</math>
 
==Harmonic wavelet transform==
 
In the harmonic wavelet transform, therefore, an arbitrary real- or complex-valued function <math>f(t)</math> (in [[Lp space|L2]]) is expanded in the basis of the harmonic wavelets (for all integers ''j'') and their complex conjugates:
 
:<math>f(t) = \sum_{j=-\infty}^\infty \sum_{k=-\infty}^\infty \left[ a_{j,k} w(2^j t - k) + \tilde{a}_{j,k} w^*(2^j t - k)\right],</math>
 
or alternatively in the basis of the wavelets for non-negative ''j'' supplemented by the scaling functions ''&phi;'':
 
:<math>f(t) = \sum_{k=-\infty}^\infty \left[ a_k \varphi(t - k) + \tilde{a}_k \varphi^*(t - k) \right] + \sum_{j=0}^\infty \sum_{k=-\infty}^\infty \left[ a_{j,k} w(2^j t - k) + \tilde{a}_{j,k} w^*(2^j t - k)\right] .</math>
 
The expansion coefficients can then, in principle, be computed using the orthogonality relationships:
 
:<math>
\begin{align}
a_{j,k} & {} = 2^j \int_{-\infty}^\infty f(t) \cdot w^*(2^j t - k) \, dt \\
\tilde{a}_{j,k} & {} = 2^j \int_{-\infty}^\infty f(t) \cdot w(2^j t - k) \, dt \\
a_k & {} = \int_{-\infty}^\infty f(t) \cdot \varphi^*(t - k) \, dt \\
\tilde{a}_k & {} = \int_{-\infty}^\infty f(t) \cdot \varphi(t - k) \, dt.
\end{align}
</math>
 
For a real-valued function ''f''(''t''), <math>\tilde{a}_{j,k} = a_{j,k}^*</math> and <math>\tilde{a}_k = a_k^*</math> so one can cut the number of independent expansion coefficients in half.
 
This expansion has the property, analogous to [[Parseval's theorem]], that:
 
:<math>
\begin{align}
& \sum_{j=-\infty}^\infty \sum_{k=-\infty}^\infty 2^{-j} \left( |a_{j,k}|^2 + |\tilde{a}_{j,k}|^2 \right) \\
& {} = \sum_{k=-\infty}^\infty \left( |a_k|^2 + |\tilde{a}_k|^2 \right) + \sum_{j=0}^\infty \sum_{k=-\infty}^\infty 2^{-j} \left( |a_{j,k}|^2 + |\tilde{a}_{j,k}|^2 \right) \\
& {} = \int_{-\infty}^\infty |f(x)|^2 \, dx.
\end{align}
</math>
 
Rather than computing the expansion coefficients directly from the orthogonality relationships, however, it is possible to do so using a sequence of Fourier transforms.  This is much more efficient in the discrete analogue of this transform (discrete ''t''), where it can exploit [[fast Fourier transform]] algorithms.
 
== References ==
 
* David E. Newland, "Harmonic wavelet analysis," ''Proceedings of the Royal Society of London, Series A (Mathematical and Physical Sciences)'', vol. '''443''', no. 1917, p. 203&ndash;225 (8 Oct. 1993).
* ''Wavelets: the key to intermittent information'' by B. W. Silverman and J. C. Vassilicos, Oxford University Press, 2000. (ISBN 0-19-850716-X)
* B. Boashash, editor, “Time-Frequency Signal Analysis and Processing – A Comprehensive Reference”, Elsevier Science, Oxford, 2003.
 
[[Category:Time–frequency analysis]]
[[Category:Transforms]]
[[Category:Wavelets]]

Revision as of 04:20, 27 January 2014

In the mathematics of signal processing, the harmonic wavelet transform, introduced by David Edward Newland in 1993, is a wavelet-based linear transformation of a given function into a time-frequency representation. It combines advantages of the short-time Fourier transform and the continuous wavelet transform. It can be expressed in terms of repeated Fourier transforms, and its discrete analogue can be computed efficiently using a fast Fourier transform algorithm.

Harmonic wavelets

The transform uses a family of "harmonic" wavelets indexed by two integers j (the "level" or "order") and k (the "translation"), given by w(2jtk), where

w(t)=ei4πtei2πti2πt.

These functions are orthogonal, and their Fourier transforms are a square window function (constant in a certain octave band and zero elsewhere). In particular, they satisfy:

w*(2jtk)w(2jtk)dt=12jδj,jδk,k
w(2jtk)w(2jtk)dt=0

where "*" denotes complex conjugation and δ is Kronecker's delta.

As the order j increases, these wavelets become more localized in Fourier space (frequency) and in higher frequency bands, and conversely become less localized in time (t). Hence, when they are used as a basis for expanding an arbitrary function, they represent behaviors of the function on different timescales (and at different time offsets for different k).

However, it is possible to combine all of the negative orders (j < 0) together into a single family of "scaling" functions φ(tk) where

φ(t)=ei2πt1i2πt.

The function φ is orthogonal to itself for different k and is also orthogonal to the wavelet functions for non-negative j:

φ*(tk)φ(tk)dt=δk,k
w*(2jtk)φ(tk)dt=0 for j0
φ(tk)φ(tk)dt=0
w(2jtk)φ(tk)dt=0 for j0.

Harmonic wavelet transform

In the harmonic wavelet transform, therefore, an arbitrary real- or complex-valued function f(t) (in L2) is expanded in the basis of the harmonic wavelets (for all integers j) and their complex conjugates:

f(t)=j=k=[aj,kw(2jtk)+a~j,kw*(2jtk)],

or alternatively in the basis of the wavelets for non-negative j supplemented by the scaling functions φ:

f(t)=k=[akφ(tk)+a~kφ*(tk)]+j=0k=[aj,kw(2jtk)+a~j,kw*(2jtk)].

The expansion coefficients can then, in principle, be computed using the orthogonality relationships:

aj,k=2jf(t)w*(2jtk)dta~j,k=2jf(t)w(2jtk)dtak=f(t)φ*(tk)dta~k=f(t)φ(tk)dt.

For a real-valued function f(t), a~j,k=aj,k* and a~k=ak* so one can cut the number of independent expansion coefficients in half.

This expansion has the property, analogous to Parseval's theorem, that:

j=k=2j(|aj,k|2+|a~j,k|2)=k=(|ak|2+|a~k|2)+j=0k=2j(|aj,k|2+|a~j,k|2)=|f(x)|2dx.

Rather than computing the expansion coefficients directly from the orthogonality relationships, however, it is possible to do so using a sequence of Fourier transforms. This is much more efficient in the discrete analogue of this transform (discrete t), where it can exploit fast Fourier transform algorithms.

References

  • David E. Newland, "Harmonic wavelet analysis," Proceedings of the Royal Society of London, Series A (Mathematical and Physical Sciences), vol. 443, no. 1917, p. 203–225 (8 Oct. 1993).
  • Wavelets: the key to intermittent information by B. W. Silverman and J. C. Vassilicos, Oxford University Press, 2000. (ISBN 0-19-850716-X)
  • B. Boashash, editor, “Time-Frequency Signal Analysis and Processing – A Comprehensive Reference”, Elsevier Science, Oxford, 2003.