Shifted Gompertz distribution: Difference between revisions
No edit summary |
en>BeyondNormality |
||
Line 1: | Line 1: | ||
[ | In [[mathematical logic]], a [[Theory (mathematical logic)|theory]] is '''complete''' if it is a '''maximal consistent set''' of sentences, i.e., if it is [[consistency|consistent]], and none of its proper extensions is consistent. For theories in logics which contain [[classical logic|classical propositional logic]], this is equivalent to asking that for every [[sentence (mathematical logic)|sentence]] φ in the [[formal language|language]] of the theory it contains either φ itself or its negation ¬φ. | ||
Recursively axiomatizable first-order theories that are rich enough to allow general mathematical reasoning to be formulated cannot be complete, as demonstrated by [[Gödel's incompleteness theorem]]. | |||
This sense of ''complete'' is distinct from the notion of a complete ''logic'', which asserts that for every theory that can be formulated in the logic, all semantically valid statements are provable theorems (for an appropriate sense of "semantically valid"). [[Gödel's completeness theorem]] is about this latter kind of completeness. | |||
Complete theories are closed under a number of conditions internally modelling the [[T-schema]]: | |||
*For a set <math>S\!</math>: <math>A \land B \in S</math> if and only if <math>A \in S</math> and <math>B \in S</math>, | |||
*For a set <math>S\!</math>: <math>A \lor B \in S</math> if and only if <math>A \in S</math> or <math>B \in S</math>. | |||
Maximal consistent sets are a fundamental tool in the [[model theory]] of [[classical logic]] and [[modal logic]]. Their existence in a given case is usually a straightforward consequence of [[Zorn's lemma]], based on the idea that a [[contradiction]] involves use of only finitely many premises. In the case of modal logics, the collection of maximal consistent sets extending a theory ''T'' (closed under the necessitation rule) can be given the structure of a [[Kripke semantics|model]] of ''T'', called the canonical model. | |||
==Examples== | |||
Some examples of complete theories are: | |||
* [[Presburger arithmetic]] | |||
* [[Tarski's axioms]] for [[Euclidean geometry]] | |||
* The theory of [[dense linear order]]s | |||
* The theory of [[algebraically closed field]]s of a given characteristic | |||
* The theory of [[real closed field]]s | |||
* Every [[Morley's categoricity theorem|uncountably categorical]] countable theory | |||
* Every [[omega-categorical theory|countably categorical]] countable theory | |||
==References== | |||
{{Portal|Logic}} | |||
* {{cite book |first=Elliott |last=Mendelson |title=Introduction to Mathematical Logic |edition=Fourth edition |year=1997 |publisher=Chapman & Hall |isbn=978-0-412-80830-2| pages=86}} | |||
{{Logic}} | |||
[[Category:Mathematical logic]] | |||
[[Category:Model theory]] | |||
{{mathlogic-stub}} |
Revision as of 05:10, 10 December 2013
In mathematical logic, a theory is complete if it is a maximal consistent set of sentences, i.e., if it is consistent, and none of its proper extensions is consistent. For theories in logics which contain classical propositional logic, this is equivalent to asking that for every sentence φ in the language of the theory it contains either φ itself or its negation ¬φ.
Recursively axiomatizable first-order theories that are rich enough to allow general mathematical reasoning to be formulated cannot be complete, as demonstrated by Gödel's incompleteness theorem.
This sense of complete is distinct from the notion of a complete logic, which asserts that for every theory that can be formulated in the logic, all semantically valid statements are provable theorems (for an appropriate sense of "semantically valid"). Gödel's completeness theorem is about this latter kind of completeness.
Complete theories are closed under a number of conditions internally modelling the T-schema:
Maximal consistent sets are a fundamental tool in the model theory of classical logic and modal logic. Their existence in a given case is usually a straightforward consequence of Zorn's lemma, based on the idea that a contradiction involves use of only finitely many premises. In the case of modal logics, the collection of maximal consistent sets extending a theory T (closed under the necessitation rule) can be given the structure of a model of T, called the canonical model.
Examples
Some examples of complete theories are:
- Presburger arithmetic
- Tarski's axioms for Euclidean geometry
- The theory of dense linear orders
- The theory of algebraically closed fields of a given characteristic
- The theory of real closed fields
- Every uncountably categorical countable theory
- Every countably categorical countable theory
References
Sportspersons Hyslop from Nicolet, usually spends time with pastimes for example martial arts, property developers condominium in singapore singapore and hot rods. Maintains a trip site and has lots to write about after touring Gulf of Porto: Calanche of Piana.
- 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.
My blog: http://www.primaboinca.com/view_profile.php?userid=5889534