Distance measures (cosmology): Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
en>Hangfromthefloor
m Overview: Disambig link
 
Fixed first graph caption (backslash was missing before Omega_k)
Line 1: Line 1:
The individual who wrote the post is called Jayson Hirano and he totally digs that title. What me and my family love is to climb but I'm thinking on beginning some thing new. Distributing manufacturing has been his occupation for some time. Alaska is exactly where I've always been living.<br><br>Here is my web-site psychic readings - [http://checkmates.co.za/index.php?do=/profile-56347/info/ http://checkmates.co.za],
In [[mathematics]], the '''Riemann–von Mangoldt formula''', named for [[Bernhard Riemann]] and [[Hans Carl Friedrich von Mangoldt]], describes the distribution of the zeros of the [[Riemann zeta function]].
 
The formula states that the number ''N''(''T'') of zeros of the zeta function with imaginary part greater than 0 and less than or equal to ''T'' satisfies
 
:<math>N(T)=\frac{T}{2\pi}\log{\frac{T}{2\pi}}-\frac{T}{2\pi}+O(\log{T}).</math>
 
The formula was stated by [[Riemann]] in his famous paper ''[[On the Number of Primes Less Than a Given Magnitude]]'' (1859) and proved by [[von Mangoldt]] in 1905.
 
Backlund gives an explicit form of the error for all ''T'' greater than 2:
:<math>\left\vert{ N(T) - \left({\frac{T}{2\pi}\log{\frac{T}{2\pi}}-\frac{T}{2\pi} } - \frac{7}{8}\right)}\right\vert < 0.137 \log T + 0.443  \log\log T + 4.350 \ . </math>
 
==References==
* {{cite book | last=Edwards | first=H.M. | authorlink=Harold Edwards (mathematician) | title=Riemann's zeta function | series=Pure and Applied Mathematics | volume=58 | location=New York-London |publisher=Academic Press | year=1974 | isbn=0-12-232750-0 | zbl=0315.10035 }}
* {{cite book | last=Ivić | first=Aleksandar | title=The theory of Hardy's ''Z''-function | series=Cambridge Tracts in Mathematics | volume=196 | location=Cambridge | publisher=[[Cambridge University Press]] | year=2013 | isbn=978-1-107-02883-8 | zbl=pre06093527 }}
* {{cite book | last=Patterson | first=S.J. | title=An introduction to the theory of the Riemann zeta-function | series=Cambridge Studies in Advanced Mathematics | volume=14 | location=Cambridge | publisher=[[Cambridge University Press]] | year=1988 | isbn=0-521-33535-3 | zbl=0641.10029 }}
 
{{DEFAULTSORT:Riemann-von Mangoldt formula}}
[[Category:Analytic number theory]]
[[Category:Theorems in number theory]]
 
 
{{numtheory-stub}}

Revision as of 16:12, 30 October 2013

In mathematics, the Riemann–von Mangoldt formula, named for Bernhard Riemann and Hans Carl Friedrich von Mangoldt, describes the distribution of the zeros of the Riemann zeta function.

The formula states that the number N(T) of zeros of the zeta function with imaginary part greater than 0 and less than or equal to T satisfies

N(T)=T2πlogT2πT2π+O(logT).

The formula was stated by Riemann in his famous paper On the Number of Primes Less Than a Given Magnitude (1859) and proved by von Mangoldt in 1905.

Backlund gives an explicit form of the error for all T greater than 2:

|N(T)(T2πlogT2πT2π78)|<0.137logT+0.443loglogT+4.350.

References

  • 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.

    My blog: http://www.primaboinca.com/view_profile.php?userid=5889534
  • 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.

    My blog: http://www.primaboinca.com/view_profile.php?userid=5889534
  • 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.

    My blog: http://www.primaboinca.com/view_profile.php?userid=5889534


Template:Numtheory-stub