Spin spherical harmonics: Difference between revisions
en>Razor-ockham Add explicit formulas and reference note. |
en>Suslindisambiguator No edit summary |
||
Line 1: | Line 1: | ||
In applied [[mathematics]], '''Gabor atoms''', or '''Gabor functions''', are [[function (mathematics)|functions]] used in the analysis proposed by [[Dennis Gabor]] in 1946 in which a family of functions is built from translations and modulations of a generating function. | |||
==Overview== | |||
In 1946, [[Dennis Gabor]] suggested the idea of using a granular system to produce [[sound]]. In his work, Gabor discussed the problems with the [[Fourier analysis]], and, according to him, although the mathematics is perfectly correct, it is not possible to apply it physically, mainly in usual sounds, as the sound of a siren, in which the frequency parameter is variable through time. Another problem would be the underlying supposition, as we use sine waves analysis, that the signal under concern has infinite duration – see [[time–frequency analysis]]. Gabor proposes to apply the ideas from [[quantum physics]] to sound, allowing an analogy between sound and quanta. Under a mathematical background he proposed a method to reduce the Fourier analysis into cells. His research aimed at the information transmission through communication channels. Gabor saw in his atoms a possibility to transmit the same information but using less data, instead of transmitting the signal itself it would be possible to transmit only the coefficients which represent the same signal using his atoms. | |||
==Mathematical definition== | |||
The Gabor function is defined by | |||
:<math>g_{\ell,n}(x) = g(x - a\ell)e^{2\pi ibnx}, \quad -\infty < \ell,n < \infty,</math> | |||
where ''a'' and ''b'' are constants and ''g'' is a fixed function in ''L''<sup>2</sup>('''R'''), such that ||''g''|| = 1. Depending on <math>a</math>, <math>b</math>, and <math>g</math>, a Gabor system may be a basis for ''L''<sup>2</sup>('''R'''), which is defined by translations and modulations. This is similar to a wavelet system, which may form a basis through dilating and translating a mother wavelet. | |||
==See also== | |||
*[[Fourier analysis]] | |||
*[[Wavelet]] | |||
*[[Gabor wavelet]] | |||
*[[Morlet wavelet]] | |||
==References== | |||
*Hans G. Feichtinger, Thomas Strohmer: "Gabor Analysis and Algorithms", Birkhäuser, 1998; ISBN 0-8176-3959-4 | |||
*Hans G. Feichtinger, Thomas Strohmer: "Advances in Gabor Analysis", Birkhäuser, 2003; ISBN 0-8176-4239-0 | |||
*Karlheinz Gröchenig: "Foundations of Time-Frequency Analysis", Birkhäuser, 2001; ISBN 0-8176-4022-3 | |||
==External links== | |||
*[http://www.nuhag.eu NuHAG homepage] | |||
{{DEFAULTSORT:Gabor Atom}} | |||
[[Category:Wavelets]] | |||
[[Category:Fourier analysis]] |
Latest revision as of 11:12, 14 September 2013
In applied mathematics, Gabor atoms, or Gabor functions, are functions used in the analysis proposed by Dennis Gabor in 1946 in which a family of functions is built from translations and modulations of a generating function.
Overview
In 1946, Dennis Gabor suggested the idea of using a granular system to produce sound. In his work, Gabor discussed the problems with the Fourier analysis, and, according to him, although the mathematics is perfectly correct, it is not possible to apply it physically, mainly in usual sounds, as the sound of a siren, in which the frequency parameter is variable through time. Another problem would be the underlying supposition, as we use sine waves analysis, that the signal under concern has infinite duration – see time–frequency analysis. Gabor proposes to apply the ideas from quantum physics to sound, allowing an analogy between sound and quanta. Under a mathematical background he proposed a method to reduce the Fourier analysis into cells. His research aimed at the information transmission through communication channels. Gabor saw in his atoms a possibility to transmit the same information but using less data, instead of transmitting the signal itself it would be possible to transmit only the coefficients which represent the same signal using his atoms.
Mathematical definition
The Gabor function is defined by
where a and b are constants and g is a fixed function in L2(R), such that ||g|| = 1. Depending on , , and , a Gabor system may be a basis for L2(R), which is defined by translations and modulations. This is similar to a wavelet system, which may form a basis through dilating and translating a mother wavelet.
See also
References
- Hans G. Feichtinger, Thomas Strohmer: "Gabor Analysis and Algorithms", Birkhäuser, 1998; ISBN 0-8176-3959-4
- Hans G. Feichtinger, Thomas Strohmer: "Advances in Gabor Analysis", Birkhäuser, 2003; ISBN 0-8176-4239-0
- Karlheinz Gröchenig: "Foundations of Time-Frequency Analysis", Birkhäuser, 2001; ISBN 0-8176-4022-3