Discrete Poisson equation: Difference between revisions
en>Kri m Undid revision 495441442 by Kri (talk) One equation can describe many equations if it is in matrix form |
|||
Line 1: | Line 1: | ||
In [[general relativity]], '''optical scalars''' refer to a set of three [[scalar (physics)|scalar]] functions <math>\{ \hat\theta</math> (expansion), <math>\hat\sigma</math> (shear) and <math>\hat\omega</math> (twist/rotation/vorticity)<math>\}</math> describing the propagation of a [[null geodesic|geodesic null]] [[congruence (general relativity)|congruence]].<ref name=OS-1>Eric Poisson. ''A Relativist's Toolkit: The Mathematics of Black-Hole Mechanics''. Cambridge: Cambridge University Press, 2004. Chapter 2.</ref><ref name=OS-2>Hans Stephani, Dietrich Kramer, Malcolm MacCallum, Cornelius Hoenselaers, Eduard Herlt. ''Exact Solutions of Einstein's Field Equations''. Cambridge: Cambridge University Press, 2003. Chapter 6.</ref><ref name=OS-3>Subrahmanyan Chandrasekhar. ''The Mathematical Theory of Black Holes''. Oxford: Oxford University Press, 1998. Section 9.(a).</ref><ref name=OS-4>Jeremy Bransom Griffiths, Jiri Podolsky. ''Exact Space-Times in Einstein's General Relativity''. Cambridge: Cambridge University Press, 2009. Section 2.1.3.</ref><ref name=OS-5>P Schneider, J Ehlers, E E Falco. ''Gravitational Lenses''. Berlin: Springer, 1999. Section 3.4.2.</ref> | |||
<br /> | |||
In fact, these three scalars <math>\{ \hat\theta\,,\hat\sigma\,, \hat\omega \}</math> can be defined for both timelike and null geodesic congruences in an identical spirit, but they are called "optical scalars" only for the null case. Also, it is their tensorial predecessors <math>\{ \hat\theta \hat h_{ab}\,,\hat\sigma_{ab}\,, \hat\omega_{ab} \}</math> that are adopted in tensorial equations, while the scalars <math>\{ \hat\theta\,,\hat\sigma\,, \hat\omega \}</math> mainly show up in equations written in the language of [[Newman-Penrose formalism]]. | |||
==Definitions: expansion, shear and twist== | |||
===For geodesic timelike congruences=== | |||
Denote the tangent vector field of an observer's worldline (in a ''timelike'' congruence) as <math>Z^a</math>, and then one could construct induced "spatial metrics" that | |||
<br /> | |||
<math>(1)\quad h^{ab}=g^{ab}+Z^a Z^b\;,\quad h_{ab}=g_{ab}+Z_a Z_b\;,\quad h^a_{\;\;b}=g^a_{\;\;b}+Z^a Z_b\;, </math> | |||
<br /> | |||
where <math>h^a_{\;\;b}</math> works as a spatially projecting operator. Use <math>h^a_{\;\;b}</math> to project the coordinate covariant derivative <math>\nabla_b Z_a</math> and one obtains the "spatial" auxiliary tensor <math>B_{ab}</math>, | |||
<br /> | |||
<math>(2)\quad B_{ab}=h^c_{\;\;a}\, h^d_{\;\;b}\, \nabla_d Z_c = \nabla_b Z_a +A_a Z_b\;,</math> | |||
<br /> | |||
where <math>A_a</math> represents the four-acceleration, and <math>B_{ab}</math> is purely spatial in the sense that <math>B_{ab}Z^a=B_{ab}Z^b=0</math>. Specifically for an observer with a "geodesic" timelike worldline, we have | |||
<br /> | |||
<math>(3)\quad A_a=0\;,\quad\Rightarrow\quad B_{ab}= \nabla_b Z_a\;.</math> | |||
<br /> | |||
Now decompose <math>B_{ab}</math> into the symmetric part <math>\theta_{ab}</math> and <math>\omega_{ab}</math>, | |||
<br /> | |||
<math>(4)\quad \theta_{ab}=B_{(ab)}\;,\quad \omega_{ab}=B_{[ab]}\;.</math> | |||
<br /> | |||
<math>\omega_{ab}=B_{[ab]}</math> is trace-free (<math>g^{ab}\omega_{ab}=0</math>) while <math>\theta_{ab}</math> is of nonzero trace, <math>g^{ab}\theta_{ab}=\theta</math>. Thus, the symmetric part <math>\theta_{ab}</math> can be further rewritten into its trace and trace-free part, | |||
<br /> | |||
<math>(5)\quad \theta_{ab}=\frac{1}{3}\theta h_{ab} +\sigma_{ab}\;.</math> | |||
<br /> | |||
Hence, all in all we have | |||
<br /> | |||
<math>(6)\quad B_{ab}=\frac{1}{3}\theta h_{ab} +\sigma_{ab}+\omega_{ab}\;,\quad \theta=g^{ab}\theta_{ab}=g^{ab}B_{(ab)}\;,\quad \sigma_{ab}=\theta_{ab}-\frac{1}{3}\theta h_{ab}\;,\quad \omega_{ab}=B_{[ab]}\;.</math> | |||
===For geodesic null congruences=== | |||
Now, consider a geodesic ''null'' congruence with tangent vector field <math>k^a</math>. Similar to the timelike situation, we also define | |||
<br /> | |||
<math>(7)\quad \hat{B}_{ab}:= \nabla_b k_a\;,</math> | |||
<br /> | |||
which can be decomposed into | |||
<br /> | |||
<math>(8)\quad \hat B_{ab}=\hat\theta_{ab}+\hat\omega_{ab}=\frac{1}{2}\hat\theta \hat h_{ab}+\hat\sigma_{ab}+\hat\omega_{ab}\;,</math> | |||
<br /> | |||
where | |||
<br /> | |||
<math>(9)\quad \hat\theta_{ab}=\hat B_{(ab)}\;,\quad \hat\theta=\hat h^{ab} \hat B_{ab}\;,\quad \hat\sigma_{ab}=\hat B_{(ab)}-\frac{1}{2}\hat\theta \hat h_{ab}\;,\quad \hat\omega_{ab}=\hat B_{[ab]}\;.</math> | |||
<br /> | |||
Here, "hatted" quantities are utilized to stress that these quantities for null congruences are two-dimensional as opposed to the three-dimensional timelike case. However, if we only discuss null congruences in a paper, the hats can be omitted for simplicity. | |||
==Definitions: optical scalars for null congruences== | |||
The optical scalars <math>\{ \hat\theta\,,\hat\sigma\,, \hat\omega \}</math><ref name="OS-1"/><ref name="OS-2"/><ref name="OS-3"/><ref name="OS-4"/><ref name="OS-5"/> come straightforwardly from "scalarization" of the tensors <math>\{ \hat\theta\,,\hat\sigma_{ab}\,, \hat\omega_{ab} \}</math> in Eq(9). | |||
<br /> | |||
The '''expansion''' of a geodesic null congruence is defined by (where for clearance we will adopt another standard symbol "<math>;</math>" to denote the covariant derivative <math>\nabla_a</math>) | |||
<br /> | |||
<math>(10)\quad \hat\theta = \frac{1}{2}\, k^a{}_{;\,a} \;.</math> | |||
<br /> | |||
<div style="clear:both;width:65%;" class="NavFrame collapsed"> | |||
<div class="NavHead" style="background-color:#FFFFFF; text-align:left; font-size:larger;">Box A: Comparison with the "expansion rates of a null congruence" </div> | |||
<div class="NavContent" style="text-align:left;"> | |||
As shown in the article "[[Expansion rate of a null congruence]]", the outgoing and ingoing expansion rates, denoted by <math>\theta_{(\ell)}</math> and <math>\theta_{(n)}</math> respectively, are defined by | |||
<br /> | |||
<math>(A.1)\quad \theta_{(\ell)}:=h^{ab}\nabla_a l_b\;,</math> | |||
<br /> | |||
<math>(A.2)\quad \theta_{(n)}:=h^{ab}\nabla_a n_b\;,</math> | |||
<br /> | |||
where <math>h^{ab}=g^{ab}+l^a n^b+n^a l^b</math> represents the induced metric. Also, <math>\theta_{(\ell)}</math> and <math>\theta_{(n)}</math> can be calculated via | |||
<br /> | |||
<math>(A.3)\quad \theta_{(\ell)}=g^{ab}\nabla_a l_b -\kappa_{(\ell)}\;,</math> | |||
<br /> | |||
<math>(A.4)\quad \theta_{(n)}=g^{ab}\nabla_a n_b -\kappa_{(n)}\;,</math> | |||
<br /> | |||
where <math>\kappa_{(\ell)}</math> and <math>\kappa_{(n)}</math> are respectively the outgoing and ingoing non-affinity coefficients defined by | |||
<br /> | |||
<math>(A.5)\quad l^a\nabla_a l_b=\kappa_{(\ell)}l_b\;,</math> | |||
<br /> | |||
<math>(A.6)\quad n^a\nabla_a n_b=\kappa_{(n)}n_b\;.</math> | |||
<br /> | |||
Moreover, in the language of [[Newman-Penrose formalism]] with the convention <math>\{(-,+,+,+); l^a n_a=-1\,,m^a \bar{m}_a=1\}</math>, we have | |||
<br /> | |||
<math>(A.7)\quad \theta_{(l)}=-(\rho+\bar\rho)=-2\text{Re}(\rho)\,,\quad \theta_{(n)}=\mu+\bar\mu=2\text{Re}(\mu)\,,</math> | |||
<br /> | |||
As we can see, for a geodesic null congruence, the optical scalar <math>\theta</math> plays the same role with the expansion rates <math>\theta_{(\ell)}</math> and <math>\theta_{(n)}</math>. Hence, for a geodesic null congruence, <math>\theta</math> will be equal to either <math>\theta_{(\ell)}</math> or <math>\theta_{(n)}</math>. | |||
</div> | |||
</div> | |||
<br /> | |||
The '''shear''' of a geodesic null congruence is defined by | |||
<br /> | |||
<math>(11)\quad {\hat\sigma} ^2=\hat\sigma_{ab}\hat{\bar\sigma}^{ab} =\frac{1}{2}\,g^{ca}\,g^{db}\,k_{(a\,;\,b)}\,k_{c\,;\,d} - \Big(\frac{1}{2}\, k^a{}_{;\,a} \Big)^2 = \,g^{ca}\,g^{db}\frac{1}{2}\,k_{(a\,;\,b)}\,k_{c\,;\,d} - {\hat\theta}^2\;.</math> | |||
<br /> | |||
The '''twist''' of a geodesic null congruence is defined by | |||
<br /> | |||
<math>(12)\quad {\hat\omega}^2 =\frac{1}{2}\,k_{[a\,;\,b]}\,k^{a\,;\,b} =g^{ca}\,g^{db}\,k_{[a\,;\,b]}\,k_{c\,;\,d}\;.</math> | |||
<br /> | |||
In practice, a geodesic null congruence is usually defined by either its outgoing (<math>k^a=l^a</math>) or ingoing (<math>k^a=n^a</math>) tangent vector field (which are also its null normals). Thus, we obtain two sets of optical scalars <math>\{ \hat\theta_{(\ell)}\,,\hat\sigma_{(\ell)}\,, \hat\omega_{(\ell)} \}</math> and <math>\{ \hat\theta_{(n)}\,,\hat\sigma_{(n)}\,, \hat\omega_{(n)} \}</math>, which are defined with respect to <math>l^a</math> and <math>n^a</math>, respectively. | |||
==Applications in decomposing the propagation equations== | |||
===For a geodesic timelike congruence=== | |||
The propagation (or evolution) of <math>B_{ab}</math> for a geodesic timelike congruence along <math>Z^c</math> respects the following equation, | |||
<br /> | |||
<math>(13)\quad Z^c\nabla_c B_{ab}=-B^c_{\;\;b}B_{ac}+R_{cbad} Z^c Z^d\;. </math> | |||
<br /> | |||
Take the trace of Eq(13) by contracting it with <math>g^{ab}</math>, and Eq(13) becomes | |||
<br /> | |||
<math>(14)\quad Z^c\nabla_c \theta=\theta_{,\,\tau}=-\frac{1}{3}\theta^2 -\sigma_{ab}\sigma^{ab}+\omega_{ab}\omega^{ab}-R_{ab}Z^a Z^b</math> | |||
<br /> | |||
in terms of the quantities in Eq(6). Moreover, the trace-free, symmetric part of Eq(13) is | |||
<br /> | |||
<math>(15)\quad Z^c\nabla_c \sigma_{ab}=-\frac{2}{3}\theta\sigma_{ab}-\sigma_{ac}\sigma^c_{\;b}-\omega_{ac}\omega^c_{\;b}+\frac{1}{3}h_{ab}\,(\sigma_{cd}\sigma^{cd}-\omega_{cd}\omega^{cd})+C_{cbad}Z^c Z^d+\frac{1}{2}\tilde{R}_{ab}\,.</math> | |||
<br /> | |||
Finally, the antisymmetric component of Eq(13) yields | |||
<br /> | |||
<math>(16)\quad Z^c\nabla_c \omega_{ab}=-\frac{2}{3}\theta\omega_{ab}-2\sigma^c_{\;[b}\omega_{a]c}\;.</math> | |||
===For a geodesic null congruence=== | |||
A (generic) geodesic null congruence obeys the following propagation equation, | |||
<br /> | |||
<math>(16)\quad k^c\nabla_c \hat B_{ab}=-\hat B^c_{\;\;b}\hat B_{ac}+\widehat{R_{cbad} k^c k^d}\;. </math> | |||
<br /> | |||
With the definitions summarized in Eq(9), Eq(14) could be rewritten into the following componential equations, | |||
<br /> | |||
<math>(17)\quad k^c\nabla_c \hat\theta=\hat\theta_{,\,\lambda}=-\frac{1}{2}\hat\theta^2 -\hat\sigma_{ab}\hat\sigma^{ab}+\hat\omega_{ab}\hat\omega^{ab}-\widehat{R_{cd}k^c k^d}\;,</math> | |||
<br /> | |||
<math>(18)\quad k^c\nabla_c \hat\sigma_{ab}=-\hat\theta\hat\sigma_{ab}+\widehat{C_{cbad}k^c k^d}\;,</math> | |||
<br /> | |||
<math>(19)\quad k^c\nabla_c \hat\omega_{ab}=-\hat\theta\hat\omega_{ab}\;.</math> | |||
===For a restricted geodesic null congruence=== | |||
For a geodesic null congruence restricted on a null hypersurface, we have | |||
<br /> | |||
<math>(20)\quad k^c\nabla_c \theta=\hat\theta_{,\,\lambda}=-\frac{1}{2}\hat\theta^2 -\hat\sigma_{ab}\hat\sigma^{ab}-\widehat{R_{cd}k^c k^d}+\kappa_{(\ell)}\hat\theta\;,</math> | |||
<br /> | |||
<math>(21)\quad k^c\nabla_c \hat\sigma_{ab}=-\hat\theta\hat\sigma_{ab}+\widehat{C_{cbad}k^c k^d}+\kappa_{(\ell)}\hat\sigma_{ab}\;,</math> | |||
<br /> | |||
<math>(22)\quad k^c\nabla_c \hat\omega_{ab}=0\;.</math> | |||
==Spin coefficients, Raychaudhuri's equation and optical scalars== | |||
For a better understanding of the previous section, we will briefly review the meanings of relevant NP spin coefficients in depicting [[Congruence (general relativity)|null congruences]].<ref name="OS-1"/> The [[tensor]] form of [[Raychaudhuri equation|Raychaudhuri's equation]]<ref>Sayan Kar, Soumitra SenGupta. ''The Raychaudhuri equations: a brief review''. Pramana, 2007, '''69'''(1): 49-76. [arxiv.org/abs/gr-qc/0611123v1 gr-qc/0611123]</ref> governing null flows reads | |||
<br /> | |||
<math>(23)\quad \mathcal{L}_{\ell}\theta_{(\ell)}=-\frac{1}{2}\theta_{(\ell)}^2+\tilde{\kappa}_{(\ell)}\theta_{(\ell)}-\sigma_{ab}\sigma^{ab}+\tilde{\omega}_{ab}\tilde{\omega}^{ab}-R_{ab}l^a l^b\,,</math> | |||
<br /> | |||
where <math>\tilde{\kappa}_{(\ell)}</math> is defined such that <math>\tilde{\kappa}_{(\ell)}l^b:= l^a \nabla_a l^b</math>. The quantities in Raychaudhuri's equation are related with the spin coefficients via | |||
<br /> | |||
<math>(24)\quad \theta_{(\ell)}=-(\rho+\bar\rho)=-2\text{Re}(\rho)\,,\quad \theta_{(n)}=\mu+\bar\mu=2\text{Re}(\mu)\,,</math> | |||
<br /> | |||
<math>(25)\quad \sigma_{ab}=-\sigma \bar m_a \bar m_b-\bar\sigma m_a m_b\,,</math> | |||
<br /> | |||
<math>(26)\quad \tilde{\omega}_{ab}=\frac{1}{2}\,\Big(\rho-\bar\rho \Big)\,\Big(m_a \bar m_b-\bar m_a m_b \Big)=\text{Im}(\rho)\cdot\Big(m_a \bar m_b-\bar m_a m_b \Big)\,,</math> | |||
<br /> | |||
where Eq(24) follows directly from <math>\hat{h}^{ab}=\hat{h}^{ba}=m^b\bar m^a+\bar m^b m^a</math> and | |||
<br /> | |||
<math>(27)\quad \theta_{(\ell)}=\hat{h}^{ba}\nabla_a l_b=m^b\bar m^a\nabla_a l_b+\bar m^b m^a\nabla_a l_b =m^b\bar \delta l_b+\bar m^b \delta l_b=-(\rho+\bar\rho)\,,</math> | |||
<br /> | |||
<math>(28)\quad \theta_{(n)}=\hat{h}^{ba}\nabla_a n_b=\bar m^b m^a\nabla_a n_b+m^b\bar m^a\nabla_a n_b=\bar m^b \delta n_b+m^b\bar \delta n_b=\mu+\bar\mu\,.</math> | |||
==See also== | |||
*[[Raychaudhuri equation|Raychaudhari equation]] | |||
*[[Congruence (general relativity)]] | |||
==References== | |||
{{Reflist}} | |||
[[Category:General relativity]] |
Revision as of 15:16, 17 July 2013
In general relativity, optical scalars refer to a set of three scalar functions (expansion), (shear) and (twist/rotation/vorticity) describing the propagation of a geodesic null congruence.[1][2][3][4][5]
In fact, these three scalars can be defined for both timelike and null geodesic congruences in an identical spirit, but they are called "optical scalars" only for the null case. Also, it is their tensorial predecessors that are adopted in tensorial equations, while the scalars mainly show up in equations written in the language of Newman-Penrose formalism.
Definitions: expansion, shear and twist
For geodesic timelike congruences
Denote the tangent vector field of an observer's worldline (in a timelike congruence) as , and then one could construct induced "spatial metrics" that
where works as a spatially projecting operator. Use to project the coordinate covariant derivative and one obtains the "spatial" auxiliary tensor ,
where represents the four-acceleration, and is purely spatial in the sense that . Specifically for an observer with a "geodesic" timelike worldline, we have
Now decompose into the symmetric part and ,
is trace-free () while is of nonzero trace, . Thus, the symmetric part can be further rewritten into its trace and trace-free part,
Hence, all in all we have
For geodesic null congruences
Now, consider a geodesic null congruence with tangent vector field . Similar to the timelike situation, we also define
which can be decomposed into
where
Here, "hatted" quantities are utilized to stress that these quantities for null congruences are two-dimensional as opposed to the three-dimensional timelike case. However, if we only discuss null congruences in a paper, the hats can be omitted for simplicity.
Definitions: optical scalars for null congruences
The optical scalars [1][2][3][4][5] come straightforwardly from "scalarization" of the tensors in Eq(9).
The expansion of a geodesic null congruence is defined by (where for clearance we will adopt another standard symbol "" to denote the covariant derivative )
As shown in the article "Expansion rate of a null congruence", the outgoing and ingoing expansion rates, denoted by and respectively, are defined by
where represents the induced metric. Also, and can be calculated via
where and are respectively the outgoing and ingoing non-affinity coefficients defined by
Moreover, in the language of Newman-Penrose formalism with the convention , we have
As we can see, for a geodesic null congruence, the optical scalar plays the same role with the expansion rates and . Hence, for a geodesic null congruence, will be equal to either or .
The shear of a geodesic null congruence is defined by
The twist of a geodesic null congruence is defined by
In practice, a geodesic null congruence is usually defined by either its outgoing () or ingoing () tangent vector field (which are also its null normals). Thus, we obtain two sets of optical scalars and , which are defined with respect to and , respectively.
Applications in decomposing the propagation equations
For a geodesic timelike congruence
The propagation (or evolution) of for a geodesic timelike congruence along respects the following equation,
Take the trace of Eq(13) by contracting it with , and Eq(13) becomes
in terms of the quantities in Eq(6). Moreover, the trace-free, symmetric part of Eq(13) is
Finally, the antisymmetric component of Eq(13) yields
For a geodesic null congruence
A (generic) geodesic null congruence obeys the following propagation equation,
With the definitions summarized in Eq(9), Eq(14) could be rewritten into the following componential equations,
For a restricted geodesic null congruence
For a geodesic null congruence restricted on a null hypersurface, we have
Spin coefficients, Raychaudhuri's equation and optical scalars
For a better understanding of the previous section, we will briefly review the meanings of relevant NP spin coefficients in depicting null congruences.[1] The tensor form of Raychaudhuri's equation[6] governing null flows reads
where is defined such that . The quantities in Raychaudhuri's equation are related with the spin coefficients via
where Eq(24) follows directly from and
See also
References
43 year old Petroleum Engineer Harry from Deep River, usually spends time with hobbies and interests like renting movies, property developers in singapore new condominium and vehicle racing. Constantly enjoys going to destinations like Camino Real de Tierra Adentro.
- ↑ 1.0 1.1 1.2 Eric Poisson. A Relativist's Toolkit: The Mathematics of Black-Hole Mechanics. Cambridge: Cambridge University Press, 2004. Chapter 2.
- ↑ 2.0 2.1 Hans Stephani, Dietrich Kramer, Malcolm MacCallum, Cornelius Hoenselaers, Eduard Herlt. Exact Solutions of Einstein's Field Equations. Cambridge: Cambridge University Press, 2003. Chapter 6.
- ↑ 3.0 3.1 Subrahmanyan Chandrasekhar. The Mathematical Theory of Black Holes. Oxford: Oxford University Press, 1998. Section 9.(a).
- ↑ 4.0 4.1 Jeremy Bransom Griffiths, Jiri Podolsky. Exact Space-Times in Einstein's General Relativity. Cambridge: Cambridge University Press, 2009. Section 2.1.3.
- ↑ 5.0 5.1 P Schneider, J Ehlers, E E Falco. Gravitational Lenses. Berlin: Springer, 1999. Section 3.4.2.
- ↑ Sayan Kar, Soumitra SenGupta. The Raychaudhuri equations: a brief review. Pramana, 2007, 69(1): 49-76. [arxiv.org/abs/gr-qc/0611123v1 gr-qc/0611123]