Procedural parameter: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
en>Edward
 
en>Steel1943
Disambiguated: programmingComputer programming
 
Line 1: Line 1:
== Abercrombie Lausanne son ==
In [[mathematics]], more specifically in [[abstract algebra]], the '''Frobenius theorem''', proved by [[Ferdinand Georg Frobenius]] in 1877, characterizes the [[finite-dimensional]] [[Associative algebra|associative]] [[division algebra]]s over the [[real number]]s. According to the theorem, every such algebra is [[isomorphic]] to one of the following:
* '''R''' (the real numbers)
* '''C''' (the [[complex number]]s)
* '''H''' (the [[quaternions]]).
These algebras have dimensions 1, 2, and 4, respectively.  Of these three algebras, the real and complex numbers are [[commutative]], but the quaternions are not.


Pour les fournisseurs communauté contracté de soins de santé mentale, Web basé formation (comme le trouble série traumatique de stress post-101) qui existe actuellement et sera complétée par une formation sur les meilleures pratiques en matière de soins de santé mentale élaborés par le ministère de la Défense (DoD) Centre de psychologie de déploiement.<br><br>Et de l'OTAN dans le golfe Persique. Une bonne campagne légitime, de renforcement des liens prend du temps. Parfois, les musiciens sont si excellents que la période intérimaire, quand je dois m'asseoir sur un tel contenu incroyable, est atroce. Des centaines de prisonniers politiques ont été emprisonnés sous de fausses accusations de coups prévus, l'armée a été forcée de se soumettre; une nouvelle constitution est en cours d'élaboration, et l'indépendance du pouvoir judiciaire est sous l'assaut par le government.Much des médias de masse a été racheté <br><br>Et la dynamique ou le sens de la [http://www.rechenschiebersammlung.ch/Anleitungen/define.asp Abercrombie Lausanne] variation de l'intensité, la couleur, la [http://www.angelforce.ch/content/member/crypt.asp New Balance 574] vitesse, et l'interprétation par rapport à une livraison monotone viennent souvent naturellement ou facilement à ces danseurs .. Pour leurs décisions masturbatoires transparents pour transformer un roman en trois films pour les moyens de tripler les bénéfices, plus d'importance cette semaine se penche sur la façon dont les critiques répondent à la désolation de Smaug, et les sortes de [http://www.walzehuser-buehni.ch/controls/base.asp Nike Suisse] qualités recherchées après dans leurs évaluations de Jackson dernière <br><br>CallFire dit que le mouvement vient pour aider CallFire intensifier encore ses activités et se déplacer [http://www.apmmedia.ch/temps/router.asp Pandora Suisse] dans sa prochaine phase de croissance. Beaucoup pensent que les effets secondaires potentiels de certains vaccins peuvent être plus graves et mortelles que les maladies réelles ou de maladies dont ils sont conçus pour prévenir.<br><br>" onmouseover="this.style.backgroundColor='#ebeff9'" onmouseout="this.style.backgroundColor='#fff'">Cristiano Ronaldo porter Nike Total 90 mais seulement obtenu un champion roi de tasse, mais le poids ne s'allume pas, Adidas Adipure car le Real Madrid a battu Barcelone et remporter le championnat, le plus important est Cristiano Ronaldo porter Adidas F50 adiZero dans le play off finale seul but.<br><br>Ses tweets sont souvent plus simples ("Il y avait une grande promenade en famille le long du sentier côtier de Fife aujourd'hui avec un soupçon de soleil aucun signe des tempêtes de neige ou menacées, Hah!" Était une offre typique la semaine dernière), mais reflètent collectivement ses tendances libérales, son<ul>
This theorem is closely related to [[Hurwitz's theorem (normed division algebras)|Hurwitz's theorem]], which states that the only [[normed division algebra]]s over the real numbers are '''R''', '''C''', '''H''', and the (non-associative) algebra '''O''' of [[octonions]].
 
 
  <li>[http://www.proyectoalba.com.ar/spip.php?article66/&quot;/ http://www.proyectoalba.com.ar/spip.php?article66/&quot;/]</li>
==Proof==
 
The main ingredients for the following proof are the [[Cayley–Hamilton theorem]] and the [[fundamental theorem of algebra]].
  <li>[http://enseignement-lsf.com/spip.php?article65#forum24694525 http://enseignement-lsf.com/spip.php?article65#forum24694525]</li>
 
 
We can consider ''D'' as a finite-dimensional '''R'''-[[vector space]]. Any element d of ''D'' defines an [[endomorphism]] of ''D'' by left-multiplication and we will identify d with that endomorphism. Therefore we can speak about the [[trace (linear algebra)|trace]] of ''d'', the [[characteristic polynomial|characteristic]] and [[Minimal polynomial (linear algebra)|minimal]] [[polynomial]]s. Also, we identify the real multiples of 1 with '''R'''. When we write ''a'' ≤ 0 for an element a of ''D'', we tacitly assume that a is contained in '''R'''. The key to the argument is the following
  <li>[http://www.ideovert.com/spip.php?article5 http://www.ideovert.com/spip.php?article5]</li>
 
 
Claim: The set ''V'' of all elements a of ''D'' such that ''a''<sup>2</sup> ≤ 0 is a vector subspace of ''D'' of [[codimension]] 1.
  <li>[http://verdamilio.net/tonio/spip.php?article1557/ http://verdamilio.net/tonio/spip.php?article1557/]</li>
 
 
To see that, we pick an ''a'' &isin; ''D''. Let ''m'' be the dimension of ''D'' as an '''R'''-vector space. Let ''p''(''x'') be the characteristic polynomial of ''a''. By the fundamental theorem of algebra, we can write
  <li>[http://ciarcr.org/spip.php?article310/ http://ciarcr.org/spip.php?article310/]</li>
 
 
:<math> p(x)= (x-t_1)\cdots(x-t_r) (x-z_1)(x - \overline{z_1}) \cdots (x-z_s)(x - \overline{z_s})</math>
</ul>
 
for some real ''t<sub>i</sub>'' and (non-real) complex numbers ''z<sub>j</sub>''. We have 2''s'' + ''r'' = ''m''. The polynomials <math>x^2 - 2\operatorname{Re}z_j\,x + |z_j|^2 = (x-z_j)(x-\overline{z_j})</math> are [[irreducible polynomial|irreducible]] over '''R'''. By the Cayley–Hamilton theorem, ''p''(''a'') = 0 and because ''D'' is a division algebra, it follows that either ''a'' − ''t<sub>i</sub>'' = 0 for some ''i'' or that <math>a^2 - 2\operatorname{Re}z\,a + |z|^2=0</math>, ''z'' = ''z<sub>j</sub>'' for some ''j''. The first case implies that ''a'' &isin; '''R'''. In the second case, it follows that <math>x^2 - 2\operatorname{Re}z\,x + |z|^2</math> is the minimal polynomial of ''a''. Because ''p''(''x'') has the same complex roots as the minimal polynomial and because it is real it follows that
 
:<math> p(x)=(x^2 - 2\operatorname{Re}z\,x + |z|^2)^k \, </math>
 
and ''m''=2''k''. The coefficient in front of <math>x^{2k-1}</math> in ''p''(''x'') is the trace of ''a'' (up to sign). Therefore we read from the above equation: the trace of a is zero if and only if Re(''z'') = 0, that is <math>a^2 = -|z|^2</math>.
 
Therefore ''V'' is the subset of all a with tr&nbsp;''a'' = 0. In particular, it is a vector subspace (!). Moreover, ''V'' has codimension 1 since it is the kernel of a (nonzero) linear form. Also note that ''D'' is the direct sum of '''R''' and ''V'' (as vector spaces). Therefore, ''V'' generates ''D'' as an algebra.
 
Define now for <math>a,b \in V:\ B(a,b):= -ab - ba.</math> Because of the identity <math>(a+b)^2-a^2-b^2 = ab+ ba</math>, it follows that <math>B(a,b)</math> is real and since <math>a^2 \le 0, B(a,a)>0 </math> if ''a'' ≠ 0. Thus ''B'' is a [[definite bilinear form|positive definite]] [[symmetric bilinear form]], in other words, an [[inner product]] on ''V''.
 
Let ''W'' be a subspace of ''V'' that generates ''D'' as an algebra and which is minimal with respect to this property. Let <math>e_1, \ldots, e_n</math> be an [[orthonormal basis]] of ''W''.  
With respect to the negative definite bilinear form <math>-B</math>
these elements satisfy the following relations:
 
:<math>e_i^2 =-1, e_i e_j = - e_j e_i. \, </math>
 
If ''n''&nbsp;=&nbsp;0, then ''D'' is [[isomorphic]] to '''R'''.
 
If ''n''&nbsp;=&nbsp;1, then ''D'' is generated by 1 and ''e''<sub>1</sub> subject to the relation <math>e_1^2 = -1</math>. Hence it is isomorphic to '''C'''.
 
If ''n'' = 2, it has been shown above that ''D'' is generated by 1, ''e''<sub>1</sub>, ''e''<sub>2</sub> subject to the relations <math>e_1^2 = e_2^2 =-1,\ e_1 e_2 = - e_2 e_1</math> and <math>(e_1 e_2)(e_1 e_2) =-1</math>. These are precisely the relations for '''H'''.
 
If ''n''&nbsp;>&nbsp;2, then ''D'' cannot be a division algebra.  Assume that n > 2. Let <math>u:= e_1 e_2 e_n</math>. It is easy to see that ''u''<sup>2</sup> = 1 (this only works if ''n'' > 2). Therefore 0 = ''u''<sup>2</sup> − 1 = (''u''−1)(''u''+1) implies that ''u'' = ±1 (because ''D'' is still assumed to be a division algebra). But if ''u''= ±1, then <math>e_n = \mp e_1 e_2</math> and so <math>e_1, e_2,\ldots,e_{n-1}</math> generates&nbsp;''D''. This contradicts the minimality of&nbsp;''W''.
 
Remark: The fact that ''D'' is generated by <math>e_1, \ldots, e_n</math> subject to the above relations means that ''D'' is the [[Clifford algebra]] of '''R'''<sup>''n''</sup>. The last step shows that the only real Clifford algebras which are division algebras are Cl<sup>0</sup>, Cl<sup>1</sup> and Cl<sup>2</sup>.
 
Remark: As a consequence, the only [[commutative]] division algebras are '''R''' and '''C'''. Also note that '''H''' is not a '''C'''-algebra. If it were, then the center of '''H''' has to contain '''C''', but the center of '''H''' is '''R'''. Therefore, the only division algebra over '''C''' is '''C''' itself.
 
==Pontryagin variant==
If ''D'' is a [[connected space|connected]], [[locally compact space|locally compact]] division [[topological ring|ring]], then either ''D'' = '''R''', or ''D'' = '''C''', or ''D'' = '''H'''.
 
==References==
* Ray E. Artz (2009) [http://www.math.cmu.edu/~wn0g/noll/qu1.pdf Scalar Algebras and Quaternions], Theorem 7.1 "Frobenius Classification", page 26.
* Ferdinand Georg Frobenius (1878) "[http://commons.wikimedia.org/wiki/File:%C3%9Cber_lineare_Substitutionen_und_bilineare_Formen.djvu Über lineare Substitutionen und bilineare Formen]", ''Journal für die reine und angewandte Mathematik'' 84:1–63 ([[Crelle's Journal]]). Reprinted in ''Gesammelte Abhandlungen'' Band I, pp.343–405.
* Yuri Bahturin (1993) ''Basic Structures of Modern Algebra'', Kluwer Acad. Pub. pp.30–2 ISBN 0-7923-2459-5 .
* [[Leonard Dickson]] (1914) ''Linear Algebras'', [[Cambridge University Press]]. See §11 "Algebra of real quaternions; its unique place among algebras", pages 10 to 12.
* R.S. Palais (1968) "The Classification of Real Division Algebras" [[American Mathematical Monthly]] 75:366–8.
* [[Lev Semenovich Pontryagin]], [[List of publications in mathematics#Topological Groups|Topological Groups]], page 159, 1966.
 
[[Category:Algebras]]
[[Category:Quaternions]]
[[Category:Theorems in abstract algebra]]
[[Category:Articles containing proofs]]

Latest revision as of 05:43, 7 April 2013

In mathematics, more specifically in abstract algebra, the Frobenius theorem, proved by Ferdinand Georg Frobenius in 1877, characterizes the finite-dimensional associative division algebras over the real numbers. According to the theorem, every such algebra is isomorphic to one of the following:

These algebras have dimensions 1, 2, and 4, respectively. Of these three algebras, the real and complex numbers are commutative, but the quaternions are not.

This theorem is closely related to Hurwitz's theorem, which states that the only normed division algebras over the real numbers are R, C, H, and the (non-associative) algebra O of octonions.

Proof

The main ingredients for the following proof are the Cayley–Hamilton theorem and the fundamental theorem of algebra.

We can consider D as a finite-dimensional R-vector space. Any element d of D defines an endomorphism of D by left-multiplication and we will identify d with that endomorphism. Therefore we can speak about the trace of d, the characteristic and minimal polynomials. Also, we identify the real multiples of 1 with R. When we write a ≤ 0 for an element a of D, we tacitly assume that a is contained in R. The key to the argument is the following

Claim: The set V of all elements a of D such that a2 ≤ 0 is a vector subspace of D of codimension 1.

To see that, we pick an aD. Let m be the dimension of D as an R-vector space. Let p(x) be the characteristic polynomial of a. By the fundamental theorem of algebra, we can write

p(x)=(xt1)(xtr)(xz1)(xz1)(xzs)(xzs)

for some real ti and (non-real) complex numbers zj. We have 2s + r = m. The polynomials x22zjx+|zj|2=(xzj)(xzj) are irreducible over R. By the Cayley–Hamilton theorem, p(a) = 0 and because D is a division algebra, it follows that either ati = 0 for some i or that a22za+|z|2=0, z = zj for some j. The first case implies that aR. In the second case, it follows that x22zx+|z|2 is the minimal polynomial of a. Because p(x) has the same complex roots as the minimal polynomial and because it is real it follows that

p(x)=(x22zx+|z|2)k

and m=2k. The coefficient in front of x2k1 in p(x) is the trace of a (up to sign). Therefore we read from the above equation: the trace of a is zero if and only if Re(z) = 0, that is a2=|z|2.

Therefore V is the subset of all a with tr a = 0. In particular, it is a vector subspace (!). Moreover, V has codimension 1 since it is the kernel of a (nonzero) linear form. Also note that D is the direct sum of R and V (as vector spaces). Therefore, V generates D as an algebra.

Define now for a,bV:B(a,b):=abba. Because of the identity (a+b)2a2b2=ab+ba, it follows that B(a,b) is real and since a20,B(a,a)>0 if a ≠ 0. Thus B is a positive definite symmetric bilinear form, in other words, an inner product on V.

Let W be a subspace of V that generates D as an algebra and which is minimal with respect to this property. Let e1,,en be an orthonormal basis of W. With respect to the negative definite bilinear form B these elements satisfy the following relations:

ei2=1,eiej=ejei.

If n = 0, then D is isomorphic to R.

If n = 1, then D is generated by 1 and e1 subject to the relation e12=1. Hence it is isomorphic to C.

If n = 2, it has been shown above that D is generated by 1, e1, e2 subject to the relations e12=e22=1,e1e2=e2e1 and (e1e2)(e1e2)=1. These are precisely the relations for H.

If n > 2, then D cannot be a division algebra. Assume that n > 2. Let u:=e1e2en. It is easy to see that u2 = 1 (this only works if n > 2). Therefore 0 = u2 − 1 = (u−1)(u+1) implies that u = ±1 (because D is still assumed to be a division algebra). But if u= ±1, then en=e1e2 and so e1,e2,,en1 generates D. This contradicts the minimality of W.

Remark: The fact that D is generated by e1,,en subject to the above relations means that D is the Clifford algebra of Rn. The last step shows that the only real Clifford algebras which are division algebras are Cl0, Cl1 and Cl2.

Remark: As a consequence, the only commutative division algebras are R and C. Also note that H is not a C-algebra. If it were, then the center of H has to contain C, but the center of H is R. Therefore, the only division algebra over C is C itself.

Pontryagin variant

If D is a connected, locally compact division ring, then either D = R, or D = C, or D = H.

References