Inverse hyperbolic function: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
en>EmausBot
 
en>Tobias Bergemann
Reverted 1 edit by 197.243.37.190 (talk). (TW)
Line 1: Line 1:
Hi there. Allow me start by introducing the writer, her title is Sophia. To climb is some thing she would by no means give up. She works as a journey agent but quickly she'll be on her own. Ohio is where her house is.<br><br>my web blog - certified psychics ([http://cspl.postech.ac.kr/zboard/Membersonly/144571 Learn Alot more])
The '''Johnson bound''' is a limit on the size of [[error-correcting code]]s, as used in [[coding theory]] for [[data transmission]] or communications.
 
== Definition ==
Let <math>C</math> be a q-ary [[code]] of length <math>n</math>, i.e. a subset of <math>\mathbb{F}_q^n</math>. Let <math>d</math> be the minimum distance of <math>C</math>, i.e.
 
:<math>d = \min_{x,y \in C, x \neq y} d(x,y)</math>&nbsp;,
 
where <math>d(x,y)</math> is the [[Hamming distance]] between <math>x</math> and <math>y</math>.
 
Let <math>C_q(n,d)</math> be the set of all q-ary codes with length <math>n</math> and minimum distance <math>d</math> and let <math>C_q(n,d,w)</math> denote the set of codes in <math>C_q(n,d)</math> such that every element has exactly <math>w</math> nonzero entries.  
 
Denote by <math>|C|</math> the number of elements in <math>C</math>. Then, we define <math>A_q(n,d)</math> to be the largest size of a code with length <math>n</math> and minimum distance <math>d</math>:
 
:<math> A_q(n,d) = \max_{C \in C_q(n,d)} |C|.</math>
 
Similarly, we define <math>A_q(n,d,w)</math> to be the largest size of a code in <math>C_q(n,d,w)</math>:
 
:<math> A_q(n,d,w) = \max_{C \in C_q(n,d,w)} |C|.</math>
 
<strong>Theorem 1 (Johnson bound for <math>A_q(n,d)</math>):</strong>
 
If <math>d=2t+1</math>,
 
:<math> A_q(n,d) \leq \frac{q^n}{\sum_{i=0}^t {n \choose i} (q-1)^i + \frac{{n \choose t+1} (q-1)^{t+1} - {d \choose t} A_q(n,d,d)}{A_q(n,d,t+1)} }. </math>
 
If <math>d=2t</math>,
 
:<math> A_q(n,d) \leq \frac{q^n}{\sum_{i=0}^t {n \choose i} (q-1)^i + \frac{{n \choose t+1} (q-1)^{t+1} }{A_q(n,d,t+1)} }. </math>
 
<strong> Theorem 2 (Johnson bound for <math>A_q(n,d,w)</math>):</strong>
 
<strong>(i)</strong> If <math>d > 2w</math>,
 
:<math> A_q(n,d,w) = 1. </math>
 
<strong>(ii)</strong> If <math>d \leq 2w</math>, then define the variable <math>e</math> as follows. If <math>d</math> is even, then define <math>e</math> through the relation <math>d=2e</math>; if <math>d</math> is odd, define <math>e</math> through the relation <math>d = 2e - 1</math>. Let <math>q^* = q - 1</math>. Then,
 
:<math> A_q(n,d,w) \leq \lfloor \frac{n q^*}{w}  \lfloor \frac{(n-1)q^*}{w-1} \lfloor \cdots \lfloor \frac{(n-w+e)q^*}{e} \rfloor \cdots \rfloor \rfloor </math>
 
where <math>\lfloor ~~ \rfloor</math> is the [[floor function]].
 
<strong>Remark:</strong> Plugging the bound of Theorem 2 into the bound of Theorem 1 produces a numerical upper bound on <math>A_q(n,d)</math>.
 
==See also==
* [[Singleton bound]]
* [[Hamming bound]]
* [[Plotkin bound]]
* [[Elias Bassalygo bound]]
* [[Gilbert–Varshamov bound]]
* [[Griesmer bound]]
 
==References==
* S. M. Johnson, "A new upper bound for error-correcting codes," ''IRE Transactions on Information Theory'', pp.&nbsp;203–207, April 1962.
* W. Cary Huffman, [[Vera Pless]], ''Fundamentals of Error-Correcting Codes'', Cambridge University Press, 2003.
 
[[Category:Coding theory]]

Revision as of 12:41, 17 November 2013

The Johnson bound is a limit on the size of error-correcting codes, as used in coding theory for data transmission or communications.

Definition

Let C be a q-ary code of length n, i.e. a subset of 𝔽qn. Let d be the minimum distance of C, i.e.

d=minx,yC,xyd(x,y) ,

where d(x,y) is the Hamming distance between x and y.

Let Cq(n,d) be the set of all q-ary codes with length n and minimum distance d and let Cq(n,d,w) denote the set of codes in Cq(n,d) such that every element has exactly w nonzero entries.

Denote by |C| the number of elements in C. Then, we define Aq(n,d) to be the largest size of a code with length n and minimum distance d:

Aq(n,d)=maxCCq(n,d)|C|.

Similarly, we define Aq(n,d,w) to be the largest size of a code in Cq(n,d,w):

Aq(n,d,w)=maxCCq(n,d,w)|C|.

Theorem 1 (Johnson bound for Aq(n,d)):

If d=2t+1,

Aq(n,d)qni=0t(ni)(q1)i+(nt+1)(q1)t+1(dt)Aq(n,d,d)Aq(n,d,t+1).

If d=2t,

Aq(n,d)qni=0t(ni)(q1)i+(nt+1)(q1)t+1Aq(n,d,t+1).

Theorem 2 (Johnson bound for Aq(n,d,w)):

(i) If d>2w,

Aq(n,d,w)=1.

(ii) If d2w, then define the variable e as follows. If d is even, then define e through the relation d=2e; if d is odd, define e through the relation d=2e1. Let q*=q1. Then,

Aq(n,d,w)nq*w(n1)q*w1(nw+e)q*e

where is the floor function.

Remark: Plugging the bound of Theorem 2 into the bound of Theorem 1 produces a numerical upper bound on Aq(n,d).

See also

References

  • S. M. Johnson, "A new upper bound for error-correcting codes," IRE Transactions on Information Theory, pp. 203–207, April 1962.
  • W. Cary Huffman, Vera Pless, Fundamentals of Error-Correcting Codes, Cambridge University Press, 2003.