Inverse hyperbolic function: Difference between revisions
en>EmausBot m r2.7.3) (Robot: Adding ru:Обратные гиперболические функции |
en>Tobias Bergemann Reverted 1 edit by 197.243.37.190 (talk). (TW) |
||
Line 1: | Line 1: | ||
The '''Johnson bound''' is a limit on the size of [[error-correcting code]]s, as used in [[coding theory]] for [[data transmission]] or communications. | |||
== Definition == | |||
Let <math>C</math> be a q-ary [[code]] of length <math>n</math>, i.e. a subset of <math>\mathbb{F}_q^n</math>. Let <math>d</math> be the minimum distance of <math>C</math>, i.e. | |||
:<math>d = \min_{x,y \in C, x \neq y} d(x,y)</math> , | |||
where <math>d(x,y)</math> is the [[Hamming distance]] between <math>x</math> and <math>y</math>. | |||
Let <math>C_q(n,d)</math> be the set of all q-ary codes with length <math>n</math> and minimum distance <math>d</math> and let <math>C_q(n,d,w)</math> denote the set of codes in <math>C_q(n,d)</math> such that every element has exactly <math>w</math> nonzero entries. | |||
Denote by <math>|C|</math> the number of elements in <math>C</math>. Then, we define <math>A_q(n,d)</math> to be the largest size of a code with length <math>n</math> and minimum distance <math>d</math>: | |||
:<math> A_q(n,d) = \max_{C \in C_q(n,d)} |C|.</math> | |||
Similarly, we define <math>A_q(n,d,w)</math> to be the largest size of a code in <math>C_q(n,d,w)</math>: | |||
:<math> A_q(n,d,w) = \max_{C \in C_q(n,d,w)} |C|.</math> | |||
<strong>Theorem 1 (Johnson bound for <math>A_q(n,d)</math>):</strong> | |||
If <math>d=2t+1</math>, | |||
:<math> A_q(n,d) \leq \frac{q^n}{\sum_{i=0}^t {n \choose i} (q-1)^i + \frac{{n \choose t+1} (q-1)^{t+1} - {d \choose t} A_q(n,d,d)}{A_q(n,d,t+1)} }. </math> | |||
If <math>d=2t</math>, | |||
:<math> A_q(n,d) \leq \frac{q^n}{\sum_{i=0}^t {n \choose i} (q-1)^i + \frac{{n \choose t+1} (q-1)^{t+1} }{A_q(n,d,t+1)} }. </math> | |||
<strong> Theorem 2 (Johnson bound for <math>A_q(n,d,w)</math>):</strong> | |||
<strong>(i)</strong> If <math>d > 2w</math>, | |||
:<math> A_q(n,d,w) = 1. </math> | |||
<strong>(ii)</strong> If <math>d \leq 2w</math>, then define the variable <math>e</math> as follows. If <math>d</math> is even, then define <math>e</math> through the relation <math>d=2e</math>; if <math>d</math> is odd, define <math>e</math> through the relation <math>d = 2e - 1</math>. Let <math>q^* = q - 1</math>. Then, | |||
:<math> A_q(n,d,w) \leq \lfloor \frac{n q^*}{w} \lfloor \frac{(n-1)q^*}{w-1} \lfloor \cdots \lfloor \frac{(n-w+e)q^*}{e} \rfloor \cdots \rfloor \rfloor </math> | |||
where <math>\lfloor ~~ \rfloor</math> is the [[floor function]]. | |||
<strong>Remark:</strong> Plugging the bound of Theorem 2 into the bound of Theorem 1 produces a numerical upper bound on <math>A_q(n,d)</math>. | |||
==See also== | |||
* [[Singleton bound]] | |||
* [[Hamming bound]] | |||
* [[Plotkin bound]] | |||
* [[Elias Bassalygo bound]] | |||
* [[Gilbert–Varshamov bound]] | |||
* [[Griesmer bound]] | |||
==References== | |||
* S. M. Johnson, "A new upper bound for error-correcting codes," ''IRE Transactions on Information Theory'', pp. 203–207, April 1962. | |||
* W. Cary Huffman, [[Vera Pless]], ''Fundamentals of Error-Correcting Codes'', Cambridge University Press, 2003. | |||
[[Category:Coding theory]] |
Revision as of 12:41, 17 November 2013
The Johnson bound is a limit on the size of error-correcting codes, as used in coding theory for data transmission or communications.
Definition
Let be a q-ary code of length , i.e. a subset of . Let be the minimum distance of , i.e.
where is the Hamming distance between and .
Let be the set of all q-ary codes with length and minimum distance and let denote the set of codes in such that every element has exactly nonzero entries.
Denote by the number of elements in . Then, we define to be the largest size of a code with length and minimum distance :
Similarly, we define to be the largest size of a code in :
Theorem 1 (Johnson bound for ):
Theorem 2 (Johnson bound for ):
(ii) If , then define the variable as follows. If is even, then define through the relation ; if is odd, define through the relation . Let . Then,
where is the floor function.
Remark: Plugging the bound of Theorem 2 into the bound of Theorem 1 produces a numerical upper bound on .
See also
- Singleton bound
- Hamming bound
- Plotkin bound
- Elias Bassalygo bound
- Gilbert–Varshamov bound
- Griesmer bound
References
- S. M. Johnson, "A new upper bound for error-correcting codes," IRE Transactions on Information Theory, pp. 203–207, April 1962.
- W. Cary Huffman, Vera Pless, Fundamentals of Error-Correcting Codes, Cambridge University Press, 2003.