Universal Transverse Mercator coordinate system: Difference between revisions
en>Peter Mercator Keep it simple. See talk page. I still favour reversion to lambda series. |
en>ClueBot NG m Reverting possible vandalism by 99.63.48.126 to version by 207.62.203.2. False positive? Report it. Thanks, ClueBot NG. (1568508) (Bot) |
||
Line 1: | Line 1: | ||
<!-- | |||
:''This article is incomplete due to technical limitations.'' | |||
--> | |||
This is a '''table of [[Clebsch-Gordan coefficients]]''' used for adding [[angular momentum]] values in [[quantum mechanics]]. The overall sign of the coefficients for each set of constant <math>j_1</math>, <math>j_2</math>, <math>j</math> is arbitrary to some degree and has been fixed according to the Condon-Shortley and Wigner sign convention as discussed by Baird and [[Lawrence Biedenharn|Biedenharn]].<ref>{{cite journal |last=Baird |first=C.E. |coauthors=L. C. Biedenharn |title=On the Representations of the Semisimple Lie Groups. III. The Explicit Conjugation Operation for SU<sub>n</sub> |journal=J. Math. Phys. |volume=5 |date=October 1964 |pages=1723–1730 |doi=10.1063/1.1704095 |url=http://link.aip.org/link/?JMAPAQ/5/1723/1 |accessdate=2007-12-20 |bibcode=1964JMP.....5.1723B}}</ref> Tables with the same sign convention may be found in the [[Particle Data Group]]'s ''Review of Particle Properties''<ref>{{cite journal |last=Hagiwara |first=K. |coauthors=''et al.'' |title=Review of Particle Properties |journal=Phys. Rev. D |volume=66 |date=July 2002 |pages=010001 |doi=10.1103/PhysRevD.66.010001 |url=http://pdg.lbl.gov/2002/clebrpp.pdf |format=PDF |accessdate=2007-12-20 |bibcode=2002PhRvD..66a0001H}}</ref> and in online tables.<ref>{{cite web |last=Mathar |first=Richard J. |title=SO(3) Clebsch Gordan coefficients |date=2006-08-14 |url=http://www.mpia.de/~mathar/progs/CGord |format=text |accessdate=2012-10-15}}</ref> | |||
==Formulation== | |||
The Clebsch-Gordan coefficients are the solutions to | |||
<math> | |||
|(j_1j_2)jm\rangle = \sum_{m_1=-j_1}^{j_1} \sum_{m_2=-j_2}^{j_2} | |||
|j_1m_1j_2m_2\rangle \langle j_1j_2;m_1m_2|j_1j_2;jm\rangle | |||
</math> | |||
Explicitly: | |||
<math>\langle j_1j_2;m_1m_2|j_1j_2;jm\rangle=</math> | |||
<math>\delta_{m,m_1+m_2} | |||
\sqrt{\frac{(2j+1)(j+j_1-j_2)!(j-j_1+j_2)!(j_1+j_2-j)! | |||
}{(j_1+j_2+j+1)!}} | |||
\ \times | |||
</math> | |||
<math> | |||
\sqrt{(j+m)!(j-m)!(j_1-m_1)!(j_1+m_1)!(j_2-m_2)!(j_2+m_2)!}\ \times | |||
</math> | |||
<math> | |||
\sum_k \frac{(-1)^k}{k!(j_1+j_2-j-k)!(j_1-m_1-k)!(j_2+m_2-k)!(j-j_2+m_1+k)!(j-j_1-m_2+k)!}. | |||
</math> | |||
The summation is extended over all integer ''k'' for which the argument of every factorial is nonnegative.<ref>(2.41), p. 172, ''Quantum Mechanics: Foundations and Applications'', Arno Bohm, M. Loewe, New York: Springer-Verlag, 3rd ed., 1993, ISBN 0-387-95330-2.</ref> | |||
For brevity, solutions with m < 0 and j<sub>1</sub> < j<sub>2</sub> are omitted. They may be calculated using the simple relations | |||
:<math>\langle j_1j_2;m_1m_2|j_1j_2;jm\rangle=(-1)^{j-j_1-j_2}\langle j_1j_2;-m_1,-m_2|j_1j_2;j,-m\rangle</math> . | |||
and | |||
:<math>\langle j_1j_2;m_1m_2|j_1j_2;jm\rangle=(-1)^{j-j_1-j_2} \langle j_2j_1;m_2m_1|j_2j_1;jm\rangle</math> . | |||
A complete list<ref>{{cite book|last=Weisbluth|first=Michael|title=Atoms and molecules|year=1978|publisher=ACADEMIC PRESS|isbn=0-12-744450-5|page=28}} Table 1.4 resumes the most common.</ref> | |||
===j<sub>2</sub>=0=== | |||
When j<sub>2</sub> = 0, the Clebsch-Gordan coefficients are given by <math>\delta_{j,j_1}\delta_{m,m_1}</math> . | |||
===j<sub>1</sub>=1/2, j<sub>2</sub>=1/2=== | |||
{| | |||
|----- align="center" | |||
| m=1 || j= | |||
|----- | |||
| <br /><br /><br />m<sub>1</sub>, m<sub>2</sub>= | |||
| | |||
{| border="1" | |||
|----- | |||
| | |||
|| '''1''' | |||
|----- align="center" | |||
| '''1/2, 1/2''' || <math>1\!\,</math> | |||
|} | |||
|} | |||
{| | |||
|----- align="center" | |||
| m=0 || j= | |||
|----- | |||
| <br /><br /><br />m<sub>1</sub>, m<sub>2</sub>= | |||
| | |||
{| border="1" | |||
|----- | |||
| | |||
|| '''1''' || '''0''' | |||
|----- align="center" | |||
| '''1/2, -1/2''' || <math>\sqrt{\frac{1}{2}}\!\,</math> | |||
| <math>\sqrt{\frac{1}{2}}\!\,</math> | |||
|----- align="center" | |||
| '''-1/2, 1/2''' || <math>\sqrt{\frac{1}{2}}\!\,</math> | |||
| <math>-\sqrt{\frac{1}{2}}\!\,</math> | |||
|} | |||
|} | |||
===j<sub>1</sub>=1, j<sub>2</sub>=1/2=== | |||
{| | |||
|----- align="center" | |||
| m=3/2 || j= | |||
|----- | |||
| <br /><br /><br />m<sub>1</sub>, m<sub>2</sub>= | |||
| | |||
{| border="1" | |||
|----- | |||
| | |||
|| '''3/2''' | |||
|----- align="center" | |||
| '''1, 1/2''' || <math>1\!\,</math> | |||
|} | |||
|} | |||
{| | |||
|----- align="center" | |||
| m=1/2 || j= | |||
|----- | |||
| <br /><br /><br />m<sub>1</sub>, m<sub>2</sub>= | |||
| | |||
{| border="1" | |||
|----- | |||
| | |||
|| '''3/2''' || '''1/2''' | |||
|----- align="center" | |||
| '''1, -1/2''' || <math>\sqrt{\frac{1}{3}}\!\,</math> | |||
| <math>\sqrt{\frac{2}{3}}\!\,</math> | |||
|----- align="center" | |||
| '''0, 1/2''' || <math>\sqrt{\frac{2}{3}}\!\,</math> | |||
| <math>-\sqrt{\frac{1}{3}}\!\,</math> | |||
|} | |||
|} | |||
===j<sub>1</sub>=1, j<sub>2</sub>=1=== | |||
{| | |||
|----- align="center" | |||
| m=2 || j= | |||
|----- | |||
| <br /><br /><br />m<sub>1</sub>, m<sub>2</sub>= | |||
| | |||
{| border="1" | |||
|----- | |||
| | |||
|| '''2''' | |||
|----- align="center" | |||
| '''1, 1''' || <math>1\!\,</math> | |||
|} | |||
|} | |||
{| | |||
|----- align="center" | |||
| m=1 || j= | |||
|----- | |||
| <br /><br /><br />m<sub>1</sub>, m<sub>2</sub>= | |||
| | |||
{| border="1" | |||
|----- | |||
| | |||
|| '''2''' || '''1''' | |||
|----- align="center" | |||
| '''1, 0''' || <math>\sqrt{\frac{1}{2}}\!\,</math> | |||
| <math>\sqrt{\frac{1}{2}}\!\,</math> | |||
|----- align="center" | |||
| '''0, 1''' || <math>\sqrt{\frac{1}{2}}\!\,</math> | |||
| <math>-\sqrt{\frac{1}{2}}\!\,</math> | |||
|} | |||
|} | |||
{| | |||
|----- align="center" | |||
| m=0 || j= | |||
|----- | |||
| <br /><br /><br />m<sub>1</sub>, m<sub>2</sub>= | |||
| | |||
{| border="1" | |||
|----- | |||
| | |||
|| '''2''' || '''1''' || '''0''' | |||
|----- align="center" | |||
| '''1, -1''' || <math>\sqrt{\frac{1}{6}}\!\,</math> | |||
| <math>\sqrt{\frac{1}{2}}\!\,</math> || <math>\sqrt{\frac{1}{3}}\!\,</math> | |||
|----- align="center" | |||
| '''0, 0''' || <math>\sqrt{\frac{2}{3}}\!\,</math> | |||
| <math>0\!\,</math> | |||
| <math>-\sqrt{\frac{1}{3}}\!\,</math> | |||
|----- align="center" | |||
| '''-1, 1''' || <math>\sqrt{\frac{1}{6}}\!\,</math> | |||
| <math>-\sqrt{\frac{1}{2}}\!\,</math> | |||
| <math>\sqrt{\frac{1}{3}}\!\,</math> | |||
|} | |||
|} | |||
===j<sub>1</sub>=3/2, j<sub>2</sub>=1/2=== | |||
{| | |||
|----- align="center" | |||
| m=2 || j= | |||
|----- | |||
| <br /><br /><br />m<sub>1</sub>, m<sub>2</sub>= | |||
| | |||
{| border="1" | |||
|----- | |||
| | |||
|| '''2''' | |||
|----- align="center" | |||
| '''3/2, 1/2''' || <math>1\!\,</math> | |||
|} | |||
|} | |||
{| | |||
|----- align="center" | |||
| m=1 || j= | |||
|----- | |||
| <br /><br /><br />m<sub>1</sub>, m<sub>2</sub>= | |||
| | |||
{| border="1" | |||
|----- | |||
| | |||
|| '''2''' || '''1''' | |||
|----- align="center" | |||
| '''3/2, -1/2''' || <math>\frac{1}{2}\!\,</math> | |||
| <math>\sqrt{\frac{3}{4}}\!\,</math> | |||
|----- align="center" | |||
| '''1/2, 1/2''' || <math>\sqrt{\frac{3}{4}}\!\,</math> | |||
| <math>-\frac{1}{2}\!\,</math> | |||
|} | |||
|} | |||
{| | |||
|----- align="center" | |||
| m=0 || j= | |||
|----- | |||
| <br /><br /><br />m<sub>1</sub>, m<sub>2</sub>= | |||
| | |||
{| border="1" | |||
|----- | |||
| | |||
|| '''2''' || '''1''' | |||
|----- align="center" | |||
| '''1/2, -1/2''' || <math>\sqrt{\frac{1}{2}}\!\,</math> | |||
| <math>\sqrt{\frac{1}{2}}\!\,</math> | |||
|----- align="center" | |||
| '''-1/2, 1/2''' || <math>\sqrt{\frac{1}{2}}\!\,</math> | |||
| <math>-\sqrt{\frac{1}{2}}\!\,</math> | |||
|} | |||
|} | |||
===j<sub>1</sub>=3/2, j<sub>2</sub>=1=== | |||
{| | |||
|----- align="center" | |||
| m=5/2 || j= | |||
|----- | |||
| <br /><br /><br />m<sub>1</sub>, m<sub>2</sub>= | |||
| | |||
{| border="1" | |||
|----- | |||
| | |||
|| '''5/2''' | |||
|----- align="center" | |||
| '''3/2, 1''' || <math>1\!\,</math> | |||
|} | |||
|} | |||
{| | |||
|----- align="center" | |||
| m=3/2 || j= | |||
|----- | |||
| <br /><br /><br />m<sub>1</sub>, m<sub>2</sub>= | |||
| | |||
{| border="1" | |||
|----- | |||
| | |||
|| '''5/2''' || '''3/2''' | |||
|----- align="center" | |||
| '''3/2, 0''' || <math>\sqrt{\frac{2}{5}}\!\,</math> | |||
| <math>\sqrt{\frac{3}{5}}\!\,</math> | |||
|----- align="center" | |||
| '''1/2, 1''' || <math>\sqrt{\frac{3}{5}}\!\,</math> | |||
| <math>-\sqrt{\frac{2}{5}}\!\,</math> | |||
|} | |||
|} | |||
{| | |||
|----- align="center" | |||
| m=1/2 || j= | |||
|----- | |||
| <br /><br /><br />m<sub>1</sub>, m<sub>2</sub>= | |||
| | |||
{| border="1" | |||
|----- | |||
| | |||
|| '''5/2''' || '''3/2''' || '''1/2''' | |||
|----- align="center" | |||
| '''3/2, -1''' | |||
| <math>\sqrt{\frac{1}{10}}\!\,</math> | |||
| <math>\sqrt{\frac{2}{5}}\!\,</math> || <math>\sqrt{\frac{1}{2}}\!\,</math> | |||
|----- align="center" | |||
| '''1/2, 0''' || <math>\sqrt{\frac{3}{5}}\!\,</math> | |||
| <math>\sqrt{\frac{1}{15}}\!\,</math> | |||
| <math>-\sqrt{\frac{1}{3}}\!\,</math> | |||
|----- align="center" | |||
| '''-1/2, 1''' | |||
| <math>\sqrt{\frac{3}{10}}\!\,</math> | |||
| <math>-\sqrt{\frac{8}{15}}\!\,</math> | |||
| <math>\sqrt{\frac{1}{6}}\!\,</math> | |||
|} | |||
|} | |||
===j<sub>1</sub>=3/2, j<sub>2</sub>=3/2=== | |||
{| | |||
|----- align="center" | |||
| m=3 || j= | |||
|----- | |||
| <br /><br /><br />m<sub>1</sub>, m<sub>2</sub>= | |||
| | |||
{| border="1" | |||
|----- | |||
| | |||
|| '''3''' | |||
|----- align="center" | |||
| '''3/2, 3/2''' || <math>1\!\,</math> | |||
|} | |||
|} | |||
{| | |||
|----- align="center" | |||
| m=2 || j= | |||
|----- | |||
| <br /><br /><br />m<sub>1</sub>, m<sub>2</sub>= | |||
| | |||
{| border="1" | |||
|----- | |||
| | |||
|| '''3''' || '''2''' | |||
|----- align="center" | |||
| '''3/2, 1/2''' || <math>\sqrt{\frac{1}{2}}\!\,</math> | |||
| <math>\sqrt{\frac{1}{2}}\!\,</math> | |||
|----- align="center" | |||
| '''1/2, 3/2''' || <math>\sqrt{\frac{1}{2}}\!\,</math> | |||
| <math>-\sqrt{\frac{1}{2}}\!\,</math> | |||
|} | |||
|} | |||
{| | |||
|----- align="center" | |||
| m=1 || j= | |||
|----- | |||
| <br /><br /><br />m<sub>1</sub>, m<sub>2</sub>= | |||
| | |||
{| border="1" | |||
|----- | |||
| | |||
|| '''3''' || '''2''' || '''1''' | |||
|----- align="center" | |||
| '''3/2, -1/2''' || <math>\sqrt{\frac{1}{5}}\!\,</math> | |||
| <math>\sqrt{\frac{1}{2}}\!\,</math> | |||
| <math>\sqrt{\frac{3}{10}}\!\,</math> | |||
|----- align="center" | |||
| '''1/2, 1/2''' || <math>\sqrt{\frac{3}{5}}\!\,</math> | |||
| <math>0\!\,</math> | |||
| <math>-\sqrt{\frac{2}{5}}\!\,</math> | |||
|----- align="center" | |||
| '''-1/2, 3/2''' || <math>\sqrt{\frac{1}{5}}\!\,</math> | |||
| <math>-\sqrt{\frac{1}{2}}\!\,</math> | |||
| <math>\sqrt{\frac{3}{10}}\!\,</math> | |||
|} | |||
|} | |||
{| | |||
|----- align="center" | |||
| m=0 || j= | |||
|----- | |||
| <br /><br /><br />m<sub>1</sub>, m<sub>2</sub>= | |||
| | |||
{| border="1" | |||
|----- | |||
| | |||
|| '''3''' || '''2''' || '''1''' || '''0''' | |||
|----- align="center" | |||
| '''3/2, -3/2''' | |||
| <math>\sqrt{\frac{1}{20}}\!\,</math> | |||
| <math>\frac{1}{2}\!\,</math> | |||
| <math>\sqrt{\frac{9}{20}}\!\,</math> | |||
| <math>\frac{1}{2}\!\,</math> | |||
|----- align="center" | |||
| '''1/2, -1/2''' | |||
| <math>\sqrt{\frac{9}{20}}\!\,</math> | |||
| <math>\frac{1}{2}\!\,</math> | |||
| <math>-\sqrt{\frac{1}{20}}\!\,</math> | |||
| <math>-\frac{1}{2}\!\,</math> | |||
|----- align="center" | |||
| '''-1/2, 1/2''' | |||
| <math>\sqrt{\frac{9}{20}}\!\,</math> | |||
| <math>-\frac{1}{2}\!\,</math> | |||
| <math>-\sqrt{\frac{1}{20}}\!\,</math> | |||
| <math>\frac{1}{2}\!\,</math> | |||
|----- align="center" | |||
| '''-3/2, 3/2''' | |||
| <math>\sqrt{\frac{1}{20}}\!\,</math> | |||
| <math>-\frac{1}{2}\!\,</math> | |||
| <math>\sqrt{\frac{9}{20}}\!\,</math> | |||
| <math>-\frac{1}{2}\!\,</math> | |||
|} | |||
|} | |||
===j<sub>1</sub>=2, j<sub>2</sub>=1/2=== | |||
{| | |||
|----- align="center" | |||
| m=5/2 || j= | |||
|----- | |||
| <br /><br /><br />m<sub>1</sub>, m<sub>2</sub>= | |||
| | |||
{| border="1" | |||
|----- | |||
| | |||
|| '''5/2''' | |||
|----- align="center" | |||
| '''2, 1/2''' || <math>1\!\,</math> | |||
|} | |||
|} | |||
{| | |||
|----- align="center" | |||
| m=3/2 || j= | |||
|----- | |||
| <br /><br /><br />m<sub>1</sub>, m<sub>2</sub>= | |||
| | |||
{| border="1" | |||
|----- | |||
| | |||
|| '''5/2''' || '''3/2''' | |||
|----- align="center" | |||
| '''2, -1/2''' || <math>\sqrt{\frac{1}{5}}\!\,</math> | |||
| <math>\sqrt{\frac{4}{5}}\!\,</math> | |||
|----- align="center" | |||
| '''1, 1/2''' || <math>\sqrt{\frac{4}{5}}\!\,</math> | |||
| <math>-\sqrt{\frac{1}{5}}\!\,</math> | |||
|} | |||
|} | |||
{| | |||
|----- align="center" | |||
| m=1/2 || j= | |||
|----- | |||
| <br /><br /><br />m<sub>1</sub>, m<sub>2</sub>= | |||
| | |||
{| border="1" | |||
|----- | |||
| | |||
|| '''5/2''' || '''3/2''' | |||
|----- align="center" | |||
| '''1, -1/2''' || <math>\sqrt{\frac{2}{5}}\!\,</math> | |||
| <math>\sqrt{\frac{3}{5}}\!\,</math> | |||
|----- align="center" | |||
| '''0, 1/2''' || <math>\sqrt{\frac{3}{5}}\!\,</math> | |||
| <math>-\sqrt{\frac{2}{5}}\!\,</math> | |||
|} | |||
|} | |||
===j<sub>1</sub>=2, j<sub>2</sub>=1=== | |||
{| | |||
|----- align="center" | |||
| m=3 || j= | |||
|----- | |||
| <br /><br /><br />m<sub>1</sub>, m<sub>2</sub>= | |||
| | |||
{| border="1" | |||
|----- | |||
| | |||
|| '''3''' | |||
|----- align="center" | |||
| '''2, 1''' || <math>1\!\,</math> | |||
|} | |||
|} | |||
{| | |||
|----- align="center" | |||
| m=2 || j= | |||
|----- | |||
| <br /><br /><br />m<sub>1</sub>, m<sub>2</sub>= | |||
| | |||
{| border="1" | |||
|----- | |||
| | |||
|| '''3''' || '''2''' | |||
|----- align="center" | |||
| '''2, 0''' || <math>\sqrt{\frac{1}{3}}\!\,</math> | |||
| <math>\sqrt{\frac{2}{3}}\!\,</math> | |||
|----- align="center" | |||
| '''1, 1''' || <math>\sqrt{\frac{2}{3}}\!\,</math> | |||
| <math>-\sqrt{\frac{1}{3}}\!\,</math> | |||
|} | |||
|} | |||
{| | |||
|----- align="center" | |||
| m=1 || j= | |||
|----- | |||
| <br /><br /><br />m<sub>1</sub>, m<sub>2</sub>= | |||
| | |||
{| border="1" | |||
|----- | |||
| | |||
|| '''3''' || '''2''' || '''1''' | |||
|----- align="center" | |||
| '''2, -1''' | |||
| <math>\sqrt{\frac{1}{15}}\!\,</math> | |||
| <math>\sqrt{\frac{1}{3}}\!\,</math> || <math>\sqrt{\frac{3}{5}}\!\,</math> | |||
|----- align="center" | |||
| '''1, 0''' | |||
| <math>\sqrt{\frac{8}{15}}\!\,</math> | |||
| <math>\sqrt{\frac{1}{6}}\!\,</math> | |||
| <math>-\sqrt{\frac{3}{10}}\!\,</math> | |||
|----- align="center" | |||
| '''0, 1''' || <math>\sqrt{\frac{2}{5}}\!\,</math> | |||
| <math>-\sqrt{\frac{1}{2}}\!\,</math> | |||
| <math>\sqrt{\frac{1}{10}}\!\,</math> | |||
|} | |||
|} | |||
{| | |||
|----- align="center" | |||
| m=0 || j= | |||
|----- | |||
| <br /><br /><br />m<sub>1</sub>, m<sub>2</sub>= | |||
| | |||
{| border="1" | |||
|----- | |||
| | |||
|| '''3''' || '''2''' || '''1''' | |||
|----- align="center" | |||
| '''1, -1''' || <math>\sqrt{\frac{1}{5}}\!\,</math> | |||
| <math>\sqrt{\frac{1}{2}}\!\,</math> | |||
| <math>\sqrt{\frac{3}{10}}\!\,</math> | |||
|----- align="center" | |||
| '''0, 0''' || <math>\sqrt{\frac{3}{5}}\!\,</math> | |||
| <math>0\!\,</math> | |||
| <math>-\sqrt{\frac{2}{5}}\!\,</math> | |||
|----- align="center" | |||
| '''-1, 1''' || <math>\sqrt{\frac{1}{5}}\!\,</math> | |||
| <math>-\sqrt{\frac{1}{2}}\!\,</math> | |||
| <math>\sqrt{\frac{3}{10}}\!\,</math> | |||
|} | |||
|} | |||
===j<sub>1</sub>=2, j<sub>2</sub>=3/2=== | |||
{| | |||
|----- align="center" | |||
| m=7/2 || j= | |||
|----- | |||
| <br /><br /><br />m<sub>1</sub>, m<sub>2</sub>= | |||
| | |||
{| border="1" | |||
|----- | |||
| | |||
|| '''7/2''' | |||
|----- align="center" | |||
| '''2, 3/2''' || <math>1\!\,</math> | |||
|} | |||
|} | |||
{| | |||
|----- align="center" | |||
| m=5/2 || j= | |||
|----- | |||
| <br /><br /><br />m<sub>1</sub>, m<sub>2</sub>= | |||
| | |||
{| border="1" | |||
|----- | |||
| | |||
|| '''7/2''' || '''5/2''' | |||
|----- align="center" | |||
| '''2, 1/2''' || <math>\sqrt{\frac{3}{7}}\!\,</math> | |||
| <math>\sqrt{\frac{4}{7}}\!\,</math> | |||
|----- align="center" | |||
| '''1, 3/2''' || <math>\sqrt{\frac{4}{7}}\!\,</math> | |||
| <math>-\sqrt{\frac{3}{7}}\!\,</math> | |||
|} | |||
|} | |||
{| | |||
|----- align="center" | |||
| m=3/2 || j= | |||
|----- | |||
| <br /><br /><br />m<sub>1</sub>, m<sub>2</sub>= | |||
| | |||
{| border="1" | |||
|----- | |||
| | |||
|| '''7/2''' || '''5/2''' || '''3/2''' | |||
|----- align="center" | |||
| '''2, -1/2''' || <math>\sqrt{\frac{1}{7}}\!\,</math> | |||
| <math>\sqrt{\frac{16}{35}}\!\,</math> | |||
| <math>\sqrt{\frac{2}{5}}\!\,</math> | |||
|----- align="center" | |||
| '''1, 1/2''' || <math>\sqrt{\frac{4}{7}}\!\,</math> | |||
| <math>\sqrt{\frac{1}{35}}\!\,</math> | |||
| <math>-\sqrt{\frac{2}{5}}\!\,</math> | |||
|----- align="center" | |||
| '''0, 3/2''' || <math>\sqrt{\frac{2}{7}}\!\,</math> | |||
| <math>-\sqrt{\frac{18}{35}}\!\,</math> | |||
| <math>\sqrt{\frac{1}{5}}\!\,</math> | |||
|} | |||
|} | |||
{| | |||
|----- align="center" | |||
| m=1/2 || j= | |||
|----- | |||
| <br /><br /><br />m<sub>1</sub>, m<sub>2</sub>= | |||
| | |||
{| border="1" | |||
|----- | |||
| | |||
|| '''7/2''' || '''5/2''' || '''3/2''' || '''1/2''' | |||
|----- align="center" | |||
| '''2, -3/2''' | |||
| <math>\sqrt{\frac{1}{35}}\!\,</math> | |||
| <math>\sqrt{\frac{6}{35}}\!\,</math> | |||
| <math>\sqrt{\frac{2}{5}}\!\,</math> || <math>\sqrt{\frac{2}{5}}\!\,</math> | |||
|----- align="center" | |||
| '''1, -1/2''' | |||
| <math>\sqrt{\frac{12}{35}}\!\,</math> | |||
| <math>\sqrt{\frac{5}{14}}\!\,</math> | |||
| <math>0\!\,</math> | |||
| <math>-\sqrt{\frac{3}{10}}\!\,</math> | |||
|----- align="center" | |||
| '''0, 1/2''' | |||
| <math>\sqrt{\frac{18}{35}}\!\,</math> | |||
| <math>-\sqrt{\frac{3}{35}}\!\,</math> | |||
| <math>-\sqrt{\frac{1}{5}}\!\,</math> | |||
| <math>\sqrt{\frac{1}{5}}\!\,</math> | |||
|----- align="center" | |||
| '''-1, 3/2''' | |||
| <math>\sqrt{\frac{4}{35}}\!\,</math> | |||
| <math>-\sqrt{\frac{27}{70}}\!\,</math> | |||
| <math>\sqrt{\frac{2}{5}}\!\,</math> | |||
| <math>-\sqrt{\frac{1}{10}}\!\,</math> | |||
|} | |||
|} | |||
===j<sub>1</sub>=2, j<sub>2</sub>=2=== | |||
{| | |||
|----- align="center" | |||
| m=4 || j= | |||
|----- | |||
| <br /><br /><br />m<sub>1</sub>, m<sub>2</sub>= | |||
| | |||
{| border="1" | |||
|----- | |||
| | |||
|| '''4''' | |||
|----- align="center" | |||
| '''2, 2''' || <math>1\!\,</math> | |||
|} | |||
|} | |||
{| | |||
|----- align="center" | |||
| m=3 || j= | |||
|----- | |||
| <br /><br /><br />m<sub>1</sub>, m<sub>2</sub>= | |||
| | |||
{| border="1" | |||
|----- | |||
| | |||
|| '''4''' || '''3''' | |||
|----- align="center" | |||
| '''2, 1''' || <math>\sqrt{\frac{1}{2}}\!\,</math> | |||
| <math>\sqrt{\frac{1}{2}}\!\,</math> | |||
|----- align="center" | |||
| '''1, 2''' || <math>\sqrt{\frac{1}{2}}\!\,</math> | |||
| <math>-\sqrt{\frac{1}{2}}\!\,</math> | |||
|} | |||
|} | |||
{| | |||
|----- align="center" | |||
| m=2 || j= | |||
|----- | |||
| <br /><br /><br />m<sub>1</sub>, m<sub>2</sub>= | |||
| | |||
{| border="1" | |||
|----- | |||
| | |||
|| '''4''' || '''3''' || '''2''' | |||
|----- align="center" | |||
| '''2, 0''' | |||
| <math>\sqrt{\frac{3}{14}}\!\,</math> | |||
| <math>\sqrt{\frac{1}{2}}\!\,</math> || <math>\sqrt{\frac{2}{7}}\!\,</math> | |||
|----- align="center" | |||
| '''1, 1''' || <math>\sqrt{\frac{4}{7}}\!\,</math> | |||
| <math>0\!\,</math> | |||
| <math>-\sqrt{\frac{3}{7}}\!\,</math> | |||
|----- align="center" | |||
| '''0, 2''' | |||
| <math>\sqrt{\frac{3}{14}}\!\,</math> | |||
| <math>-\sqrt{\frac{1}{2}}\!\,</math> | |||
| <math>\sqrt{\frac{2}{7}}\!\,</math> | |||
|} | |||
|} | |||
{| | |||
|----- align="center" | |||
| m=1 || j= | |||
|----- | |||
| <br /><br /><br />m<sub>1</sub>, m<sub>2</sub>= | |||
| | |||
{| border="1" | |||
|----- | |||
| | |||
|| '''4''' || '''3''' || '''2''' || '''1''' | |||
|----- align="center" | |||
| '''2, -1''' | |||
| <math>\sqrt{\frac{1}{14}}\!\,</math> | |||
| <math>\sqrt{\frac{3}{10}}\!\,</math> | |||
| <math>\sqrt{\frac{3}{7}}\!\,</math> || <math>\sqrt{\frac{1}{5}}\!\,</math> | |||
|----- align="center" | |||
| '''1, 0''' || <math>\sqrt{\frac{3}{7}}\!\,</math> | |||
| <math>\sqrt{\frac{1}{5}}\!\,</math> | |||
| <math>-\sqrt{\frac{1}{14}}\!\,</math> | |||
| <math>-\sqrt{\frac{3}{10}}\!\,</math> | |||
|----- align="center" | |||
| '''0, 1''' || <math>\sqrt{\frac{3}{7}}\!\,</math> | |||
| <math>-\sqrt{\frac{1}{5}}\!\,</math> | |||
| <math>-\sqrt{\frac{1}{14}}\!\,</math> | |||
| <math>\sqrt{\frac{3}{10}}\!\,</math> | |||
|----- align="center" | |||
| '''-1, 2''' | |||
| <math>\sqrt{\frac{1}{14}}\!\,</math> | |||
| <math>-\sqrt{\frac{3}{10}}\!\,</math> | |||
| <math>\sqrt{\frac{3}{7}}\!\,</math> | |||
| <math>-\sqrt{\frac{1}{5}}\!\,</math> | |||
|} | |||
|} | |||
{| | |||
|----- align="center" | |||
| m=0 || j= | |||
|----- | |||
| <br /><br /><br />m<sub>1</sub>, m<sub>2</sub>= | |||
| | |||
{| border="1" | |||
|----- | |||
| | |||
|| '''4''' || '''3''' || '''2''' || '''1''' | |||
| '''0''' | |||
|----- align="center" | |||
| '''2, -2''' | |||
| <math>\sqrt{\frac{1}{70}}\!\,</math> | |||
| <math>\sqrt{\frac{1}{10}}\!\,</math> | |||
| <math>\sqrt{\frac{2}{7}}\!\,</math> || <math>\sqrt{\frac{2}{5}}\!\,</math> | |||
| <math>\sqrt{\frac{1}{5}}\!\,</math> | |||
|----- align="center" | |||
| '''1, -1''' | |||
| <math>\sqrt{\frac{8}{35}}\!\,</math> | |||
| <math>\sqrt{\frac{2}{5}}\!\,</math> | |||
| <math>\sqrt{\frac{1}{14}}\!\,</math> | |||
| <math>-\sqrt{\frac{1}{10}}\!\,</math> | |||
| <math>-\sqrt{\frac{1}{5}}\!\,</math> | |||
|----- align="center" | |||
| '''0, 0''' | |||
| <math>\sqrt{\frac{18}{35}}\!\,</math> | |||
| <math>0\!\,</math> | |||
| <math>-\sqrt{\frac{2}{7}}\!\,</math> | |||
| <math>0\!\,</math> || <math>\sqrt{\frac{1}{5}}\!\,</math> | |||
|----- align="center" | |||
| '''-1, 1''' | |||
| <math>\sqrt{\frac{8}{35}}\!\,</math> | |||
| <math>-\sqrt{\frac{2}{5}}\!\,</math> | |||
| <math>\sqrt{\frac{1}{14}}\!\,</math> | |||
| <math>\sqrt{\frac{1}{10}}\!\,</math> | |||
| <math>-\sqrt{\frac{1}{5}}\!\,</math> | |||
|----- align="center" | |||
| '''-2, 2''' | |||
| <math>\sqrt{\frac{1}{70}}\!\,</math> | |||
| <math>-\sqrt{\frac{1}{10}}\!\,</math> | |||
| <math>\sqrt{\frac{2}{7}}\!\,</math> | |||
| <math>-\sqrt{\frac{2}{5}}\!\,</math> | |||
| <math>\sqrt{\frac{1}{5}}\!\,</math> | |||
|} | |||
|} | |||
===j<sub>1</sub>=5/2, j<sub>2</sub>=1/2=== | |||
{| | |||
|----- align="center" | |||
| m=3 || j= | |||
|----- | |||
| <br /><br /><br />m<sub>1</sub>, m<sub>2</sub>= | |||
| | |||
{| border="1" | |||
|----- | |||
| | |||
|| '''3''' | |||
|----- align="center" | |||
| '''5/2, 1/2''' || <math>1\!\,</math> | |||
|} | |||
|} | |||
{| | |||
|----- align="center" | |||
| m=2 || j= | |||
|----- | |||
| <br /><br /><br />m<sub>1</sub>, m<sub>2</sub>= | |||
| | |||
{| border="1" | |||
|----- | |||
| | |||
|| '''3''' || '''2''' | |||
|----- align="center" | |||
| '''5/2, -1/2''' || <math>\sqrt{\frac{1}{6}}\!\,</math> | |||
| <math>\sqrt{\frac{5}{6}}\!\,</math> | |||
|----- align="center" | |||
| '''3/2, 1/2''' || <math>\sqrt{\frac{5}{6}}\!\,</math> | |||
| <math>-\sqrt{\frac{1}{6}}\!\,</math> | |||
|} | |||
|} | |||
{| | |||
|----- align="center" | |||
| m=1 || j= | |||
|----- | |||
| <br /><br /><br />m<sub>1</sub>, m<sub>2</sub>= | |||
| | |||
{| border="1" | |||
|----- | |||
| | |||
|| '''3''' || '''2''' | |||
|----- align="center" | |||
| '''3/2, -1/2''' || <math>\sqrt{\frac{1}{3}}\!\,</math> | |||
| <math>\sqrt{\frac{2}{3}}\!\,</math> | |||
|----- align="center" | |||
| '''1/2, 1/2''' || <math>\sqrt{\frac{2}{3}}\!\,</math> | |||
| <math>-\sqrt{\frac{1}{3}}\!\,</math> | |||
|} | |||
|} | |||
{| | |||
|----- align="center" | |||
| m=0 || j= | |||
|----- | |||
| <br /><br /><br />m<sub>1</sub>, m<sub>2</sub>= | |||
| | |||
{| border="1" | |||
|----- | |||
| | |||
|| '''3''' || '''2''' | |||
|----- align="center" | |||
| '''1/2, -1/2''' || <math>\sqrt{\frac{1}{2}}\!\,</math> | |||
| <math>\sqrt{\frac{1}{2}}\!\,</math> | |||
|----- align="center" | |||
| '''-1/2, 1/2''' || <math>\sqrt{\frac{1}{2}}\!\,</math> | |||
| <math>-\sqrt{\frac{1}{2}}\!\,</math> | |||
|} | |||
|} | |||
===j<sub>1</sub>=5/2, j<sub>2</sub>=1=== | |||
{| | |||
|----- align="center" | |||
| m=7/2 || j= | |||
|----- | |||
| <br /><br /><br />m<sub>1</sub>, m<sub>2</sub>= | |||
| | |||
{| border="1" | |||
|----- | |||
| | |||
|| '''7/2''' | |||
|----- align="center" | |||
| '''5/2, 1''' || <math>1\!\,</math> | |||
|} | |||
|} | |||
{| | |||
|----- align="center" | |||
| m=5/2 || j= | |||
|----- | |||
| <br /><br /><br />m<sub>1</sub>, m<sub>2</sub>= | |||
| | |||
{| border="1" | |||
|----- | |||
| | |||
|| '''7/2''' || '''5/2''' | |||
|----- align="center" | |||
| '''5/2, 0''' || <math>\sqrt{\frac{2}{7}}\!\,</math> | |||
| <math>\sqrt{\frac{5}{7}}\!\,</math> | |||
|----- align="center" | |||
| '''3/2, 1''' || <math>\sqrt{\frac{5}{7}}\!\,</math> | |||
| <math>-\sqrt{\frac{2}{7}}\!\,</math> | |||
|} | |||
|} | |||
{| | |||
|----- align="center" | |||
| m=3/2 || j= | |||
|----- | |||
| <br /><br /><br />m<sub>1</sub>, m<sub>2</sub>= | |||
| | |||
{| border="1" | |||
|----- | |||
| | |||
|| '''7/2''' || '''5/2''' || '''3/2''' | |||
|----- align="center" | |||
| '''5/2, -1''' | |||
| <math>\sqrt{\frac{1}{21}}\!\,</math> | |||
| <math>\sqrt{\frac{2}{7}}\!\,</math> || <math>\sqrt{\frac{2}{3}}\!\,</math> | |||
|----- align="center" | |||
| '''3/2, 0''' | |||
| <math>\sqrt{\frac{10}{21}}\!\,</math> | |||
| <math>\sqrt{\frac{9}{35}}\!\,</math> | |||
| <math>-\sqrt{\frac{4}{15}}\!\,</math> | |||
|----- align="center" | |||
| '''1/2, 1''' | |||
| <math>\sqrt{\frac{10}{21}}\!\,</math> | |||
| <math>-\sqrt{\frac{16}{35}}\!\,</math> | |||
| <math>\sqrt{\frac{1}{15}}\!\,</math> | |||
|} | |||
|} | |||
{| | |||
|----- align="center" | |||
| m=1/2 || j= | |||
|----- | |||
| <br /><br /><br />m<sub>1</sub>, m<sub>2</sub>= | |||
| | |||
{| border="1" | |||
|----- | |||
| | |||
|| '''7/2''' || '''5/2''' || '''3/2''' | |||
|----- align="center" | |||
| '''3/2, -1''' || <math>\sqrt{\frac{1}{7}}\!\,</math> | |||
| <math>\sqrt{\frac{16}{35}}\!\,</math> | |||
| <math>\sqrt{\frac{2}{5}}\!\,</math> | |||
|----- align="center" | |||
| '''1/2, 0''' || <math>\sqrt{\frac{4}{7}}\!\,</math> | |||
| <math>\sqrt{\frac{1}{35}}\!\,</math> | |||
| <math>-\sqrt{\frac{2}{5}}\!\,</math> | |||
|----- align="center" | |||
| '''-1/2, 1''' || <math>\sqrt{\frac{2}{7}}\!\,</math> | |||
| <math>-\sqrt{\frac{18}{35}}\!\,</math> | |||
| <math>\sqrt{\frac{1}{5}}\!\,</math> | |||
|} | |||
|} | |||
===j<sub>1</sub>=5/2, j<sub>2</sub>=3/2=== | |||
{| | |||
|----- align="center" | |||
| m=4 || j= | |||
|----- | |||
| <br /><br /><br />m<sub>1</sub>, m<sub>2</sub>= | |||
| | |||
{| border="1" | |||
|----- | |||
| | |||
|| '''4''' | |||
|----- align="center" | |||
| '''5/2, 3/2''' || <math>1\!\,</math> | |||
|} | |||
|} | |||
{| | |||
|----- align="center" | |||
| m=3 || j= | |||
|----- | |||
| <br /><br /><br />m<sub>1</sub>, m<sub>2</sub>= | |||
| | |||
{| border="1" | |||
|----- | |||
| | |||
|| '''4''' || '''3''' | |||
|----- align="center" | |||
| '''5/2, 1/2''' || <math>\sqrt{\frac{3}{8}}\!\,</math> | |||
| <math>\sqrt{\frac{5}{8}}\!\,</math> | |||
|----- align="center" | |||
| '''3/2, 3/2''' || <math>\sqrt{\frac{5}{8}}\!\,</math> | |||
| <math>-\sqrt{\frac{3}{8}}\!\,</math> | |||
|} | |||
|} | |||
{| | |||
|----- align="center" | |||
| m=2 || j= | |||
|----- | |||
| <br /><br /><br />m<sub>1</sub>, m<sub>2</sub>= | |||
| | |||
{| border="1" | |||
|----- | |||
| | |||
|| '''4''' || '''3''' || '''2''' | |||
|----- align="center" | |||
| '''5/2, -1/2''' | |||
| <math>\sqrt{\frac{3}{28}}\!\,</math> | |||
| <math>\sqrt{\frac{5}{12}}\!\,</math> | |||
| <math>\sqrt{\frac{10}{21}}\!\,</math> | |||
|----- align="center" | |||
| '''3/2, 1/2''' | |||
| <math>\sqrt{\frac{15}{28}}\!\,</math> | |||
| <math>\sqrt{\frac{1}{12}}\!\,</math> | |||
| <math>-\sqrt{\frac{8}{21}}\!\,</math> | |||
|----- align="center" | |||
| '''1/2, 3/2''' | |||
| <math>\sqrt{\frac{5}{14}}\!\,</math> | |||
| <math>-\sqrt{\frac{1}{2}}\!\,</math> | |||
| <math>\sqrt{\frac{1}{7}}\!\,</math> | |||
|} | |||
|} | |||
{| | |||
|----- align="center" | |||
| m=1 || j= | |||
|----- | |||
| <br /><br /><br />m<sub>1</sub>, m<sub>2</sub>= | |||
| | |||
{| border="1" | |||
|----- | |||
| | |||
|| '''4''' || '''3''' || '''2''' || '''1''' | |||
|----- align="center" | |||
| '''5/2, -3/2''' | |||
| <math>\sqrt{\frac{1}{56}}\!\,</math> | |||
| <math>\sqrt{\frac{1}{8}}\!\,</math> | |||
| <math>\sqrt{\frac{5}{14}}\!\,</math> | |||
| <math>\sqrt{\frac{1}{2}}\!\,</math> | |||
|----- align="center" | |||
| '''3/2, -1/2''' | |||
| <math>\sqrt{\frac{15}{56}}\!\,</math> | |||
| <math>\sqrt{\frac{49}{120}}\!\,</math> | |||
| <math>\sqrt{\frac{1}{42}}\!\,</math> | |||
| <math>-\sqrt{\frac{3}{10}}\!\,</math> | |||
|----- align="center" | |||
| '''1/2, 1/2''' | |||
| <math>\sqrt{\frac{15}{28}}\!\,</math> | |||
| <math>-\sqrt{\frac{1}{60}}\!\,</math> | |||
| <math>-\sqrt{\frac{25}{84}}\!\,</math> | |||
| <math>\sqrt{\frac{3}{20}}\!\,</math> | |||
|----- align="center" | |||
| '''-1/2, 3/2''' | |||
| <math>\sqrt{\frac{5}{28}}\!\,</math> | |||
| <math>-\sqrt{\frac{9}{20}}\!\,</math> | |||
| <math>\sqrt{\frac{9}{28}}\!\,</math> | |||
| <math>-\sqrt{\frac{1}{20}}\!\,</math> | |||
|} | |||
|} | |||
{| | |||
|----- align="center" | |||
| m=0 || j= | |||
|----- | |||
| <br /><br /><br />m<sub>1</sub>, m<sub>2</sub>= | |||
| | |||
{| border="1" | |||
|----- | |||
| | |||
|| '''4''' || '''3''' || '''2''' || '''1''' | |||
|----- align="center" | |||
| '''3/2, -3/2''' | |||
| <math>\sqrt{\frac{1}{14}}\!\,</math> | |||
| <math>\sqrt{\frac{3}{10}}\!\,</math> | |||
| <math>\sqrt{\frac{3}{7}}\!\,</math> || <math>\sqrt{\frac{1}{5}}\!\,</math> | |||
|----- align="center" | |||
| '''1/2, -1/2''' || <math>\sqrt{\frac{3}{7}}\!\,</math> | |||
| <math>\sqrt{\frac{1}{5}}\!\,</math> | |||
| <math>-\sqrt{\frac{1}{14}}\!\,</math> | |||
| <math>-\sqrt{\frac{3}{10}}\!\,</math> | |||
|----- align="center" | |||
| '''-1/2, 1/2''' || <math>\sqrt{\frac{3}{7}}\!\,</math> | |||
| <math>-\sqrt{\frac{1}{5}}\!\,</math> | |||
| <math>-\sqrt{\frac{1}{14}}\!\,</math> | |||
| <math>\sqrt{\frac{3}{10}}\!\,</math> | |||
|----- align="center" | |||
| '''-3/2, 3/2''' | |||
| <math>\sqrt{\frac{1}{14}}\!\,</math> | |||
| <math>-\sqrt{\frac{3}{10}}\!\,</math> | |||
| <math>\sqrt{\frac{3}{7}}\!\,</math> | |||
| <math>-\sqrt{\frac{1}{5}}\!\,</math> | |||
|} | |||
|} | |||
===j<sub>1</sub>=5/2, j<sub>2</sub>=2=== | |||
{| | |||
|----- align="center" | |||
| m=9/2 || j= | |||
|----- | |||
| <br /><br /><br />m<sub>1</sub>, m<sub>2</sub>= | |||
| | |||
{| border="1" | |||
|----- | |||
| | |||
|| '''9/2''' | |||
|----- align="center" | |||
| '''5/2, 2''' || <math>1\!\,</math> | |||
|} | |||
|} | |||
{| | |||
|----- align="center" | |||
| m=7/2 || j= | |||
|----- | |||
| <br /><br /><br />m<sub>1</sub>, m<sub>2</sub>= | |||
| | |||
{| border="1" | |||
|----- | |||
| | |||
|| '''9/2''' || '''7/2''' | |||
|----- align="center" | |||
| '''5/2, 1''' || <math>\frac{2}{3}\!\,</math> | |||
| <math>\sqrt{\frac{5}{9}}\!\,</math> | |||
|----- align="center" | |||
| '''3/2, 2''' || <math>\sqrt{\frac{5}{9}}\!\,</math> | |||
| <math>-\frac{2}{3}\!\,</math> | |||
|} | |||
|} | |||
{| | |||
|----- align="center" | |||
| m=5/2 || j= | |||
|----- | |||
| <br /><br /><br />m<sub>1</sub>, m<sub>2</sub>= | |||
| | |||
{| border="1" | |||
|----- | |||
| | |||
|| '''9/2''' || '''7/2''' || '''5/2''' | |||
|----- align="center" | |||
| '''5/2, 0''' || <math>\sqrt{\frac{1}{6}}\!\,</math> | |||
| <math>\sqrt{\frac{10}{21}}\!\,</math> | |||
| <math>\sqrt{\frac{5}{14}}\!\,</math> | |||
|----- align="center" | |||
| '''3/2, 1''' || <math>\sqrt{\frac{5}{9}}\!\,</math> | |||
| <math>\sqrt{\frac{1}{63}}\!\,</math> | |||
| <math>-\sqrt{\frac{3}{7}}\!\,</math> | |||
|----- align="center" | |||
| '''1/2, 2''' | |||
| <math>\sqrt{\frac{5}{18}}\!\,</math> | |||
| <math>-\sqrt{\frac{32}{63}}\!\,</math> | |||
| <math>\sqrt{\frac{3}{14}}\!\,</math> | |||
|} | |||
|} | |||
{| | |||
|----- align="center" | |||
| m=3/2 || j= | |||
|----- | |||
| <br /><br /><br />m<sub>1</sub>, m<sub>2</sub>= | |||
| | |||
{| border="1" | |||
|----- | |||
| | |||
|| '''9/2''' || '''7/2''' || '''5/2''' || '''3/2''' | |||
|----- align="center" | |||
| '''5/2, -1''' | |||
| <math>\sqrt{\frac{1}{21}}\!\,</math> | |||
| <math>\sqrt{\frac{5}{21}}\!\,</math> | |||
| <math>\sqrt{\frac{3}{7}}\!\,</math> || <math>\sqrt{\frac{2}{7}}\!\,</math> | |||
|----- align="center" | |||
| '''3/2, 0''' | |||
| <math>\sqrt{\frac{5}{14}}\!\,</math> | |||
| <math>\sqrt{\frac{2}{7}}\!\,</math> | |||
| <math>-\sqrt{\frac{1}{70}}\!\,</math> | |||
| <math>-\sqrt{\frac{12}{35}}\!\,</math> | |||
|----- align="center" | |||
| '''1/2, 1''' | |||
| <math>\sqrt{\frac{10}{21}}\!\,</math> | |||
| <math>-\sqrt{\frac{2}{21}}\!\,</math> | |||
| <math>-\sqrt{\frac{6}{35}}\!\,</math> | |||
| <math>\sqrt{\frac{9}{35}}\!\,</math> | |||
|----- align="center" | |||
| '''-1/2, 2''' | |||
| <math>\sqrt{\frac{5}{42}}\!\,</math> | |||
| <math>-\sqrt{\frac{8}{21}}\!\,</math> | |||
| <math>\sqrt{\frac{27}{70}}\!\,</math> | |||
| <math>-\sqrt{\frac{4}{35}}\!\,</math> | |||
|} | |||
|} | |||
{| | |||
|----- align="center" | |||
| m=1/2 || j= | |||
|----- | |||
| <br /><br /><br />m<sub>1</sub>, m<sub>2</sub>= | |||
| | |||
{| border="1" | |||
|----- | |||
| | |||
|| '''9/2''' || '''7/2''' || '''5/2''' || '''3/2''' | |||
| '''1/2''' | |||
|----- align="center" | |||
| '''5/2, -2''' | |||
| <math>\sqrt{\frac{1}{126}}\!\,</math> | |||
| <math>\sqrt{\frac{4}{63}}\!\,</math> | |||
| <math>\sqrt{\frac{3}{14}}\!\,</math> | |||
| <math>\sqrt{\frac{8}{21}}\!\,</math> | |||
| <math>\sqrt{\frac{1}{3}}\!\,</math> | |||
|----- align="center" | |||
| '''3/2, -1''' | |||
| <math>\sqrt{\frac{10}{63}}\!\,</math> | |||
| <math>\sqrt{\frac{121}{315}}\!\,</math> | |||
| <math>\sqrt{\frac{6}{35}}\!\,</math> | |||
| <math>-\sqrt{\frac{2}{105}}\!\,</math> | |||
| <math>-\sqrt{\frac{4}{15}}\!\,</math> | |||
|----- align="center" | |||
| '''1/2, 0''' | |||
| <math>\sqrt{\frac{10}{21}}\!\,</math> | |||
| <math>\sqrt{\frac{4}{105}}\!\,</math> | |||
| <math>-\sqrt{\frac{8}{35}}\!\,</math> | |||
| <math>-\sqrt{\frac{2}{35}}\!\,</math> | |||
| <math>\sqrt{\frac{1}{5}}\!\,</math> | |||
|----- align="center" | |||
| '''-1/2, 1''' | |||
| <math>\sqrt{\frac{20}{63}}\!\,</math> | |||
| <math>-\sqrt{\frac{14}{45}}\!\,</math> | |||
| <math>0\!\,</math> | |||
| <math>\sqrt{\frac{5}{21}}\!\,</math> | |||
| <math>-\sqrt{\frac{2}{15}}\!\,</math> | |||
|----- align="center" | |||
| '''-3/2, 2''' | |||
| <math>\sqrt{\frac{5}{126}}\!\,</math> | |||
| <math>-\sqrt{\frac{64}{315}}\!\,</math> | |||
| <math>\sqrt{\frac{27}{70}}\!\,</math> | |||
| <math>-\sqrt{\frac{32}{105}}\!\,</math> | |||
| <math>\sqrt{\frac{1}{15}}\!\,</math> | |||
|} | |||
|} | |||
==SU(N) Clebsch-Gordan coefficients== | |||
Algorithms to produce Clebsch-Gordan coefficients for higher values of <math>j_1</math> and <math>j_2</math>, or for the su(N) algebra instead of su(2), are known.<ref>{{cite journal |last=Alex |first=A. |coauthors=M. Kalus, A. Huckleberry, and J. von Delft |title=A numerical algorithm for the explicit calculation of SU(N) and SL(N,C) Clebsch-Gordan coefficients |journal=J. Math. Phys. |volume=82 |date=February 2011 |pages=023507 |doi= 10.1063/1.3521562 |url=http://link.aip.org/link/doi/10.1063/1.3521562 |accessdate=2011-04-13 |bibcode=2011JMP....52b3507A|arxiv = 1009.0437 }}</ref> | |||
A [http://homepages.physik.uni-muenchen.de/~vondelft/Papers/ClebschGordan/ web interface for tabulating SU(N) Clebsch-Gordan coefficients] is readily available. | |||
==References== | |||
<references/> | |||
==External links== | |||
* Online, [[Java]]-based [http://personal.ph.surrey.ac.uk/~phs3ps/cgjava.html Clebsch-Gordan Coefficient Calculator] by Paul Stevenson | |||
* [http://functions.wolfram.com/HypergeometricFunctions/ClebschGordan/06/01/ Other formulae] for Clebsch-Gordan coefficients. | |||
* [http://homepages.physik.uni-muenchen.de/~vondelft/Papers/ClebschGordan/ Web interface for tabulating SU(N) Clebsch-Gordan coefficients] | |||
{{DEFAULTSORT:Table of Clebsch-Gordan coefficients}} | |||
[[Category:Representation theory of Lie groups]] | |||
[[Category:Mathematical tables|Clebsch-Gordan coefficients]] |
Revision as of 15:48, 4 November 2013
This is a table of Clebsch-Gordan coefficients used for adding angular momentum values in quantum mechanics. The overall sign of the coefficients for each set of constant , , is arbitrary to some degree and has been fixed according to the Condon-Shortley and Wigner sign convention as discussed by Baird and Biedenharn.[1] Tables with the same sign convention may be found in the Particle Data Group's Review of Particle Properties[2] and in online tables.[3]
Formulation
The Clebsch-Gordan coefficients are the solutions to
Explicitly:
The summation is extended over all integer k for which the argument of every factorial is nonnegative.[4]
For brevity, solutions with m < 0 and j1 < j2 are omitted. They may be calculated using the simple relations
and
A complete list[5]
j2=0
When j2 = 0, the Clebsch-Gordan coefficients are given by .
j1=1/2, j2=1/2
m=1 | j= | ||||
m1, m2= |
|
m=0 | j= | |||||||||
m1, m2= |
|
j1=1, j2=1/2
m=3/2 | j= | ||||
m1, m2= |
|
m=1/2 | j= | |||||||||
m1, m2= |
|
j1=1, j2=1
m=2 | j= | ||||
m1, m2= |
|
m=1 | j= | |||||||||
m1, m2= |
|
m=0 | j= | ||||||||||||||||
m1, m2= |
|
j1=3/2, j2=1/2
m=2 | j= | ||||
m1, m2= |
|
m=1 | j= | |||||||||
m1, m2= |
|
m=0 | j= | |||||||||
m1, m2= |
|
j1=3/2, j2=1
m=5/2 | j= | ||||
m1, m2= |
|
m=3/2 | j= | |||||||||
m1, m2= |
|
m=1/2 | j= | ||||||||||||||||
m1, m2= |
|
j1=3/2, j2=3/2
m=3 | j= | ||||
m1, m2= |
|
m=2 | j= | |||||||||
m1, m2= |
|
m=1 | j= | ||||||||||||||||
m1, m2= |
|
m=0 | j= | |||||||||||||||||||||||||
m1, m2= |
|
j1=2, j2=1/2
m=5/2 | j= | ||||
m1, m2= |
|
m=3/2 | j= | |||||||||
m1, m2= |
|
m=1/2 | j= | |||||||||
m1, m2= |
|
j1=2, j2=1
m=3 | j= | ||||
m1, m2= |
|
m=2 | j= | |||||||||
m1, m2= |
|
m=1 | j= | ||||||||||||||||
m1, m2= |
|
m=0 | j= | ||||||||||||||||
m1, m2= |
|
j1=2, j2=3/2
m=7/2 | j= | ||||
m1, m2= |
|
m=5/2 | j= | |||||||||
m1, m2= |
|
m=3/2 | j= | ||||||||||||||||
m1, m2= |
|
m=1/2 | j= | |||||||||||||||||||||||||
m1, m2= |
|
j1=2, j2=2
m=4 | j= | ||||
m1, m2= |
|
m=3 | j= | |||||||||
m1, m2= |
|
m=2 | j= | ||||||||||||||||
m1, m2= |
|
m=1 | j= | |||||||||||||||||||||||||
m1, m2= |
|
m=0 | j= | ||||||||||||||||||||||||||||||||||||
m1, m2= |
|
j1=5/2, j2=1/2
m=3 | j= | ||||
m1, m2= |
|
m=2 | j= | |||||||||
m1, m2= |
|
m=1 | j= | |||||||||
m1, m2= |
|
m=0 | j= | |||||||||
m1, m2= |
|
j1=5/2, j2=1
m=7/2 | j= | ||||
m1, m2= |
|
m=5/2 | j= | |||||||||
m1, m2= |
|
m=3/2 | j= | ||||||||||||||||
m1, m2= |
|
m=1/2 | j= | ||||||||||||||||
m1, m2= |
|
j1=5/2, j2=3/2
m=4 | j= | ||||
m1, m2= |
|
m=3 | j= | |||||||||
m1, m2= |
|
m=2 | j= | ||||||||||||||||
m1, m2= |
|
m=1 | j= | |||||||||||||||||||||||||
m1, m2= |
|
m=0 | j= | |||||||||||||||||||||||||
m1, m2= |
|
j1=5/2, j2=2
m=9/2 | j= | ||||
m1, m2= |
|
m=7/2 | j= | |||||||||
m1, m2= |
|
m=5/2 | j= | ||||||||||||||||
m1, m2= |
|
m=3/2 | j= | |||||||||||||||||||||||||
m1, m2= |
|
m=1/2 | j= | ||||||||||||||||||||||||||||||||||||
m1, m2= |
|
SU(N) Clebsch-Gordan coefficients
Algorithms to produce Clebsch-Gordan coefficients for higher values of and , or for the su(N) algebra instead of su(2), are known.[6] A web interface for tabulating SU(N) Clebsch-Gordan coefficients is readily available.
References
- ↑ One of the biggest reasons investing in a Singapore new launch is an effective things is as a result of it is doable to be lent massive quantities of money at very low interest rates that you should utilize to purchase it. Then, if property values continue to go up, then you'll get a really high return on funding (ROI). Simply make sure you purchase one of the higher properties, reminiscent of the ones at Fernvale the Riverbank or any Singapore landed property Get Earnings by means of Renting
In its statement, the singapore property listing - website link, government claimed that the majority citizens buying their first residence won't be hurt by the new measures. Some concessions can even be prolonged to chose teams of consumers, similar to married couples with a minimum of one Singaporean partner who are purchasing their second property so long as they intend to promote their first residential property. Lower the LTV limit on housing loans granted by monetary establishments regulated by MAS from 70% to 60% for property purchasers who are individuals with a number of outstanding housing loans on the time of the brand new housing purchase. Singapore Property Measures - 30 August 2010 The most popular seek for the number of bedrooms in Singapore is 4, followed by 2 and three. Lush Acres EC @ Sengkang
Discover out more about real estate funding in the area, together with info on international funding incentives and property possession. Many Singaporeans have been investing in property across the causeway in recent years, attracted by comparatively low prices. However, those who need to exit their investments quickly are likely to face significant challenges when trying to sell their property – and could finally be stuck with a property they can't sell. Career improvement programmes, in-house valuation, auctions and administrative help, venture advertising and marketing, skilled talks and traisning are continuously planned for the sales associates to help them obtain better outcomes for his or her shoppers while at Knight Frank Singapore. No change Present Rules
Extending the tax exemption would help. The exemption, which may be as a lot as $2 million per family, covers individuals who negotiate a principal reduction on their existing mortgage, sell their house short (i.e., for lower than the excellent loans), or take part in a foreclosure course of. An extension of theexemption would seem like a common-sense means to assist stabilize the housing market, but the political turmoil around the fiscal-cliff negotiations means widespread sense could not win out. Home Minority Chief Nancy Pelosi (D-Calif.) believes that the mortgage relief provision will be on the table during the grand-cut price talks, in response to communications director Nadeam Elshami. Buying or promoting of blue mild bulbs is unlawful.
A vendor's stamp duty has been launched on industrial property for the primary time, at rates ranging from 5 per cent to 15 per cent. The Authorities might be trying to reassure the market that they aren't in opposition to foreigners and PRs investing in Singapore's property market. They imposed these measures because of extenuating components available in the market." The sale of new dual-key EC models will even be restricted to multi-generational households only. The models have two separate entrances, permitting grandparents, for example, to dwell separately. The vendor's stamp obligation takes effect right this moment and applies to industrial property and plots which might be offered inside three years of the date of buy. JLL named Best Performing Property Brand for second year running
The data offered is for normal info purposes only and isn't supposed to be personalised investment or monetary advice. Motley Fool Singapore contributor Stanley Lim would not personal shares in any corporations talked about. Singapore private home costs increased by 1.eight% within the fourth quarter of 2012, up from 0.6% within the earlier quarter. Resale prices of government-built HDB residences which are usually bought by Singaporeans, elevated by 2.5%, quarter on quarter, the quickest acquire in five quarters. And industrial property, prices are actually double the levels of three years ago. No withholding tax in the event you sell your property. All your local information regarding vital HDB policies, condominium launches, land growth, commercial property and more
There are various methods to go about discovering the precise property. Some local newspapers (together with the Straits Instances ) have categorised property sections and many local property brokers have websites. Now there are some specifics to consider when buying a 'new launch' rental. Intended use of the unit Every sale begins with 10 p.c low cost for finish of season sale; changes to 20 % discount storewide; follows by additional reduction of fiftyand ends with last discount of 70 % or extra. Typically there is even a warehouse sale or transferring out sale with huge mark-down of costs for stock clearance. Deborah Regulation from Expat Realtor shares her property market update, plus prime rental residences and houses at the moment available to lease Esparina EC @ Sengkang - ↑ One of the biggest reasons investing in a Singapore new launch is an effective things is as a result of it is doable to be lent massive quantities of money at very low interest rates that you should utilize to purchase it. Then, if property values continue to go up, then you'll get a really high return on funding (ROI). Simply make sure you purchase one of the higher properties, reminiscent of the ones at Fernvale the Riverbank or any Singapore landed property Get Earnings by means of Renting
In its statement, the singapore property listing - website link, government claimed that the majority citizens buying their first residence won't be hurt by the new measures. Some concessions can even be prolonged to chose teams of consumers, similar to married couples with a minimum of one Singaporean partner who are purchasing their second property so long as they intend to promote their first residential property. Lower the LTV limit on housing loans granted by monetary establishments regulated by MAS from 70% to 60% for property purchasers who are individuals with a number of outstanding housing loans on the time of the brand new housing purchase. Singapore Property Measures - 30 August 2010 The most popular seek for the number of bedrooms in Singapore is 4, followed by 2 and three. Lush Acres EC @ Sengkang
Discover out more about real estate funding in the area, together with info on international funding incentives and property possession. Many Singaporeans have been investing in property across the causeway in recent years, attracted by comparatively low prices. However, those who need to exit their investments quickly are likely to face significant challenges when trying to sell their property – and could finally be stuck with a property they can't sell. Career improvement programmes, in-house valuation, auctions and administrative help, venture advertising and marketing, skilled talks and traisning are continuously planned for the sales associates to help them obtain better outcomes for his or her shoppers while at Knight Frank Singapore. No change Present Rules
Extending the tax exemption would help. The exemption, which may be as a lot as $2 million per family, covers individuals who negotiate a principal reduction on their existing mortgage, sell their house short (i.e., for lower than the excellent loans), or take part in a foreclosure course of. An extension of theexemption would seem like a common-sense means to assist stabilize the housing market, but the political turmoil around the fiscal-cliff negotiations means widespread sense could not win out. Home Minority Chief Nancy Pelosi (D-Calif.) believes that the mortgage relief provision will be on the table during the grand-cut price talks, in response to communications director Nadeam Elshami. Buying or promoting of blue mild bulbs is unlawful.
A vendor's stamp duty has been launched on industrial property for the primary time, at rates ranging from 5 per cent to 15 per cent. The Authorities might be trying to reassure the market that they aren't in opposition to foreigners and PRs investing in Singapore's property market. They imposed these measures because of extenuating components available in the market." The sale of new dual-key EC models will even be restricted to multi-generational households only. The models have two separate entrances, permitting grandparents, for example, to dwell separately. The vendor's stamp obligation takes effect right this moment and applies to industrial property and plots which might be offered inside three years of the date of buy. JLL named Best Performing Property Brand for second year running
The data offered is for normal info purposes only and isn't supposed to be personalised investment or monetary advice. Motley Fool Singapore contributor Stanley Lim would not personal shares in any corporations talked about. Singapore private home costs increased by 1.eight% within the fourth quarter of 2012, up from 0.6% within the earlier quarter. Resale prices of government-built HDB residences which are usually bought by Singaporeans, elevated by 2.5%, quarter on quarter, the quickest acquire in five quarters. And industrial property, prices are actually double the levels of three years ago. No withholding tax in the event you sell your property. All your local information regarding vital HDB policies, condominium launches, land growth, commercial property and more
There are various methods to go about discovering the precise property. Some local newspapers (together with the Straits Instances ) have categorised property sections and many local property brokers have websites. Now there are some specifics to consider when buying a 'new launch' rental. Intended use of the unit Every sale begins with 10 p.c low cost for finish of season sale; changes to 20 % discount storewide; follows by additional reduction of fiftyand ends with last discount of 70 % or extra. Typically there is even a warehouse sale or transferring out sale with huge mark-down of costs for stock clearance. Deborah Regulation from Expat Realtor shares her property market update, plus prime rental residences and houses at the moment available to lease Esparina EC @ Sengkang - ↑ Template:Cite web
- ↑ (2.41), p. 172, Quantum Mechanics: Foundations and Applications, Arno Bohm, M. Loewe, New York: Springer-Verlag, 3rd ed., 1993, ISBN 0-387-95330-2.
- ↑ 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.
My blog: http://www.primaboinca.com/view_profile.php?userid=5889534 Table 1.4 resumes the most common. - ↑ One of the biggest reasons investing in a Singapore new launch is an effective things is as a result of it is doable to be lent massive quantities of money at very low interest rates that you should utilize to purchase it. Then, if property values continue to go up, then you'll get a really high return on funding (ROI). Simply make sure you purchase one of the higher properties, reminiscent of the ones at Fernvale the Riverbank or any Singapore landed property Get Earnings by means of Renting
In its statement, the singapore property listing - website link, government claimed that the majority citizens buying their first residence won't be hurt by the new measures. Some concessions can even be prolonged to chose teams of consumers, similar to married couples with a minimum of one Singaporean partner who are purchasing their second property so long as they intend to promote their first residential property. Lower the LTV limit on housing loans granted by monetary establishments regulated by MAS from 70% to 60% for property purchasers who are individuals with a number of outstanding housing loans on the time of the brand new housing purchase. Singapore Property Measures - 30 August 2010 The most popular seek for the number of bedrooms in Singapore is 4, followed by 2 and three. Lush Acres EC @ Sengkang
Discover out more about real estate funding in the area, together with info on international funding incentives and property possession. Many Singaporeans have been investing in property across the causeway in recent years, attracted by comparatively low prices. However, those who need to exit their investments quickly are likely to face significant challenges when trying to sell their property – and could finally be stuck with a property they can't sell. Career improvement programmes, in-house valuation, auctions and administrative help, venture advertising and marketing, skilled talks and traisning are continuously planned for the sales associates to help them obtain better outcomes for his or her shoppers while at Knight Frank Singapore. No change Present Rules
Extending the tax exemption would help. The exemption, which may be as a lot as $2 million per family, covers individuals who negotiate a principal reduction on their existing mortgage, sell their house short (i.e., for lower than the excellent loans), or take part in a foreclosure course of. An extension of theexemption would seem like a common-sense means to assist stabilize the housing market, but the political turmoil around the fiscal-cliff negotiations means widespread sense could not win out. Home Minority Chief Nancy Pelosi (D-Calif.) believes that the mortgage relief provision will be on the table during the grand-cut price talks, in response to communications director Nadeam Elshami. Buying or promoting of blue mild bulbs is unlawful.
A vendor's stamp duty has been launched on industrial property for the primary time, at rates ranging from 5 per cent to 15 per cent. The Authorities might be trying to reassure the market that they aren't in opposition to foreigners and PRs investing in Singapore's property market. They imposed these measures because of extenuating components available in the market." The sale of new dual-key EC models will even be restricted to multi-generational households only. The models have two separate entrances, permitting grandparents, for example, to dwell separately. The vendor's stamp obligation takes effect right this moment and applies to industrial property and plots which might be offered inside three years of the date of buy. JLL named Best Performing Property Brand for second year running
The data offered is for normal info purposes only and isn't supposed to be personalised investment or monetary advice. Motley Fool Singapore contributor Stanley Lim would not personal shares in any corporations talked about. Singapore private home costs increased by 1.eight% within the fourth quarter of 2012, up from 0.6% within the earlier quarter. Resale prices of government-built HDB residences which are usually bought by Singaporeans, elevated by 2.5%, quarter on quarter, the quickest acquire in five quarters. And industrial property, prices are actually double the levels of three years ago. No withholding tax in the event you sell your property. All your local information regarding vital HDB policies, condominium launches, land growth, commercial property and more
There are various methods to go about discovering the precise property. Some local newspapers (together with the Straits Instances ) have categorised property sections and many local property brokers have websites. Now there are some specifics to consider when buying a 'new launch' rental. Intended use of the unit Every sale begins with 10 p.c low cost for finish of season sale; changes to 20 % discount storewide; follows by additional reduction of fiftyand ends with last discount of 70 % or extra. Typically there is even a warehouse sale or transferring out sale with huge mark-down of costs for stock clearance. Deborah Regulation from Expat Realtor shares her property market update, plus prime rental residences and houses at the moment available to lease Esparina EC @ Sengkang
External links
- Online, Java-based Clebsch-Gordan Coefficient Calculator by Paul Stevenson
- Other formulae for Clebsch-Gordan coefficients.
- Web interface for tabulating SU(N) Clebsch-Gordan coefficients