Fractional-order control: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
en>Mark viking
en>Mark viking
top: Added wl
 
Line 1: Line 1:
In [[mathematics]], a '''[[Generalized_complex_structure|complex structure]]''' on a [[real vector space]] ''V'' is an [[automorphism]] of ''V'' that squares to the minus [[identity function|identity]], ''−I''. Such a structure on ''V'' allows one to define multiplication by [[complex number|complex scalars]] in a canonical fashion so as to regard ''V'' as a complex vector space.
== and all by the official to master. Official among the monks ==


Every complex vector space can be equipped with a compatible complex structure, however, there is in general no canonical such structure. Complex structures have applications in [[representation theory]] as well as in [[complex geometry]] where they play an essential role in the definition of [[almost complex manifold]]s, by contrast to [[complex manifold]]s. The term "complex structure" often refers to this structure on manifolds; when it refers instead to a structure on vector spaces, it may be called a "''linear'' complex structure".
Dark nodded and found the origin of the ruling dynasty ability to much more tyrannical than heaven, is simply a secular equivalent of the dynasty, in the city among the many countless general, the construction of a number of official ...<br>no mistake, that is official.<br>example, some such as the emergence door Plains city, was originally feathering door monopoly of power, but among the different origins of the dynasty,[http://www.aseanacity.com/webalizer/prada-bags-35.html プラダ スタッズ 財布], is set dynasty of rulers, and all by the official to master. Official among the monks, is the origin of the tyrannical reign of the monks, everything dynasty service for those major sects,[http://www.aseanacity.com/webalizer/prada-bags-20.html プラダ 財布 迷彩], big family, to respect the official's ruling, otherwise would be consumed.<br>flight,[http://www.aseanacity.com/webalizer/prada-bags-31.html プラダ 財布 新作 2014], square cold white feather,[http://www.aseanacity.com/webalizer/prada-bags-33.html 財布 プラダ レディース], who would gradually close an enormous Imperial, this imperial city, stands in the center of the world, magnificent,[http://www.aseanacity.com/webalizer/prada-bags-26.html プラダ 財布 アウトレット], majestic, hundreds of millions Rays, Bling, the world was a brightly illuminated, heaven Big day in front of the Imperial City have lost glory.
相关的主题文章:
<ul>
 
  <li>[http://www.jnxinxiwang.com/plus/feedback.php?aid=302  この時間を]</li>
 
  <li>[http://www.ourhario.com/lumbini/kosodate/cgi-bin/yybbs/yyregi.cgi got Bodhi]</li>
 
  <li>[http://www.plick.co.jp/bbs/aska.cgi 、タリスマンエクセル私はそれを知っていれば、とても大きく消]</li>
 
  </ul>


==Definition and properties==
== feel the cold side has some wrong. ==


A '''complex structure''' on a [[real vector space]] ''V'' is a real [[linear transformation]]
Chapter two hundred seventeen thousands of stone soldiers,[http://www.aseanacity.com/webalizer/prada-bags-29.html 財布 ブランド プラダ]<br>Fang Shi Huang cold and xiǎo outdone, but did not sell.<br>between him speak, God sè freely, but the whole body infuriating began probing out,[http://www.aseanacity.com/webalizer/prada-bags-25.html prada トートバッグ], look at the stone house of being,[http://www.aseanacity.com/webalizer/prada-bags-20.html prada ベルト], in the end there is no ambush, the stone temple below, in the end is what kind of repression of the existence, or What xiǎo Songteng Fei Shi Huang yīn seek.<br>xiǎo stone in front of the emperor, definitely not an ordinary corner sè, state parties can be said with cold encountered among the most formidable one corner sè,[http://www.aseanacity.com/webalizer/prada-bags-35.html プラダ スタッズ 財布], watching his momentum, and Gods stone together, the distribution Wang Pin cents out waves of breath, feel the cold side has some wrong.<br>go wrong but wrong side cold in this life, encountered strong winds large làng, do not know how much, but also do not care the slightest bit.<br>'too one mén Son, is not here,[http://www.aseanacity.com/webalizer/prada-bags-25.html プラダ人気財布], I'm taking
:''J'' : ''V'' &rarr; ''V''
相关的主题文章:
such that
<ul>
:''J''<sup>2</sup> = &minus;id<sub>''V''</sub>.
 
Here ''J''<sup>2</sup> means ''J'' [[function composition|composed]] with itself and id<sub>''V''</sub> is the [[identity function|identity map]] on ''V''. That is, the effect of applying ''J'' twice is the same as multiplication by &minus;1. This is reminiscent of multiplication by the [[imaginary unit|imaginary unit, ''i'']]. A complex structure allows one to endow ''V'' with the structure of a [[complex vector space]]. Complex scalar multiplication can be defined by
  <li>[http://hlyy.quanchenglu.com/plus/view.php?aid=241374  ジャンプ中]</li>
:(''x'' + ''i y'')''v'' = ''xv'' + ''yJ''(''v'')
 
for all real numbers ''x'',''y'' and all vectors ''v'' in ''V''. One can check that this does, in fact, give ''V'' the structure of a complex vector space which we denote ''V''<sub> ''J''</sub>.
  <li>[http://nw114.org/plus/feedback.php?aid=1595 「本当に簡単]</li>
 
  <li>[http://qlsxg.com/home.php?mod=space&uid=25364 ]</li>
 
</ul>


Going in the other direction, if one starts with a complex vector space ''W'' then one can define a complex structure on the underlying real space by defining ''Jw'' = ''i w'' for all ''w'' in ''W''.
== Huangfu天軍などの他の側は、そのような人を見たことがない ==


More formally, a linear complex structure on a real vector space is an [[algebra representation]] of the [[complex number]]s '''C''', thought of as an [[associative algebra]] over the [[real number]]s. This algebra is realized concretely as <math>\mathbf{C} = \mathbf{R}[x]/(x^2+1),</math> which corresponds to <math>i^2=-1.</math> Then a representation of '''C''' is a real vector space ''V,'' together with an action of '''C''' on ''V'' (a map <math>\mathbf{C} \to \mathrm{End}(V)</math>). Concretely, this is just an action of ''i,'' as this generates the algebra, and the operator representing ''i'' (the image of ''i'' in End(''V'')) is exactly ''J.''
全くパニックはありませんが、退廃的な、人々は彼が天軍だと思います。<br>Huangfu天軍などの他の側は、そのような人を見たことがない,[http://www.aseanacity.com/webalizer/prada-bags-30.html プラダ 財布]。<br>天才彼はガンジス流砂を見て、より一般的には、しかし、低温側のようなので、穏やかで、天軍の顔に作曲が全く1確かにまた興奮殺すように,[http://www.aseanacity.com/webalizer/prada-bags-22.html プラダ 財布 定価]。<br>「あなたが望むように,[http://www.aseanacity.com/webalizer/prada-bags-21.html プラダ 財布 スタッズ]' そのようなひどい若者が、彼が長く成長させないことを知って、セットアップ反対側を殺すために<br>Huangfuの心。場合、後に至高天軍の領域に到達するために昇進し、私はライバルの彼らのこれまで以上に恐れている。<br>側寒い今、反対側はHuangfu無制限の危険を感じる可能性のある、天軍に昇格した場合,[http://www.aseanacity.com/webalizer/prada-bags-28.html プラダ 財布 迷彩]。<br>しゃぶしゃぶ,[http://www.aseanacity.com/webalizer/prada-bags-32.html プラダ ピンク 財布]! オオタカBotuは、まっすぐ下に冷たいの側に面し、降りてくるように抑制を殴る、彼を<br>、指が再び苦味の高騰海、ローリング波、巨大な波の中で登場し、波がヘビを発見された
相关的主题文章:
<ul>
 
  <li>[http://www.camyu.net/plus/feedback.php?aid=55 '小さな天使が、それは傲慢ああです]</li>
 
  <li>[http://www.cq123.com/bbs/forum.php?mod=viewthread&tid=258812 あなたは、参照して、その約束の世界の中心軸]</li>
 
  <li>[http://www.mrbenretroclothing.com/cgi-bin/guestbook/guestbook.cgi  古代都市の通りの状態についてその日の]</li>
 
</ul>


If ''V''<sub> ''J''</sub> has complex [[dimension (linear algebra)|dimension]] ''n'' then ''V'' must have real dimension 2''n''. That is, a finite-dimensional space ''V'' admits a complex structure only if it is even-dimensional. It is not hard to see that every even-dimensional vector space admits a complex structure. One can define ''J'' on pairs ''e'',''f'' of [[basis (linear algebra)|basis]] vectors by ''Je'' = ''f'' and ''Jf'' = &minus;''e'' and then extend by linearity to all of ''V''. If <math>(v_1, \ldots, v_n)</math> is a basis for the complex vector space ''V''<sub> ''J''</sub> then <math>(v_1, J v_1, \ldots, v_n, J v_n)</math> is a basis for the underlying real space ''V''.
== マジック本当に怒っ神々が微笑んで言った ' ==


A real linear transformation ''A'' : ''V'' → ''V'' is a ''complex'' linear transformation of the corresponding complex space ''V''<sub> ''J''</sub> [[if and only if]] ''A'' commutes with ''J'', i.e.
マジック本当に怒っ神々が微笑んで言った '!ハハ、私は、それはあなたが夢を見ている夢だったでしょうね」「私は家族のことができます。とても大きくなりますときに、私にこれを行うに今日では、カルマ、ない悪い気分'<br>「あなたは、私は、あなたがあなたの思考のいずれかが、あなたトスパワフルも絞り出されている置くことができる無数の秘密法を知っている、それは問題ではないと言っていませんが、それは悪魔が崩壊していないです。**,[http://www.aseanacity.com/webalizer/prada-bags-27.html プラダ 財布 値段]。「白い羽微風チャンネル、もはや、手でお願いしますタイト、ビッグバン,[http://www.aseanacity.com/webalizer/prada-bags-30.html プラダ ハンドバッグ]!マジックは本当に神々が逃げる思考の多くが続く、多数のグループの強さを非難したが、すべては風の手の中に巻き込ま白い羽であった,[http://www.aseanacity.com/webalizer/prada-bags-27.html prada 財布 人気]。<br>白色結晶の塊があり、体内での「真の魔法の神々」のストレージスペースは、直接投げパーティの寒さです。<br>一つの神々は、風が白い羽を望んでいません,[http://www.aseanacity.com/webalizer/prada-bags-34.html prada]。<br>「残念ながら、私には神々は、彼らがああ一枚超自然果物に変更することができますが、それは散乱される,[http://www.aseanacity.com/webalizer/prada-bags-20.html prada リボン 財布]。「密か残念ながらサイドでちょっと、そのような物の存在を
:''AJ'' = ''JA''
相关的主题文章:
Likewise, a real [[Linear subspace|subspace]] ''U'' of ''V'' is a complex subspace of ''V''<sub> ''J''</sub> if and only if ''J'' preserves ''U'', i.e.
<ul>
:''JU'' = ''U''
 
  <li>[http://www.quantocktherapies.co.uk/cgi-bin/guestbook/guestbook.cgi 牙漢と「アイテム真 '魔法の変動は、それがどこの弟子の中核]</li>
 
  <li>[http://www.zghehaiw.com/?action-viewcomment-type-youxiugaojian-itemid-1248 '
は「ああ]</li>
 
  <li>[http://www.kangmeizyr.com/forum.php?mod=viewthread&tid=71169&fromuid=25550 ' 反対側を]</li>
 
</ul>


==Examples==
== 「この人、実際にそんなに ==


=== C<sup>''n''</sup> ===
多くの偉大なブラックホール、およびいくつかの大きなブラックホールがあった中心に向かって集中力、空気は、いくつかのも架空の霊の世界につながる、いくつかはドラゴンの世界につながる、仏教界をリードして、通信が時間に一度あります。奇妙な力の場になり、これらのブラックホール、別の後に相次いで、さまざまな力、ねじれ、スピン、。 デュークの体がひどく少し歪んでいた8のうち、この奇妙な力場におけるhuan​​hangrn、すべての人の体は、引き裂かれた感じの波を生み出しています,[http://www.aseanacity.com/webalizer/prada-bags-23.html prada 財布 リボン]。<br>「この人、実際にそんなに! ' デュークのすべてを<br>、完全にショックを受け、すぐに後退している,[http://www.aseanacity.com/webalizer/prada-bags-32.html プラダ 財布 リボン]。<br>ブーム!ブーム,[http://www.aseanacity.com/webalizer/prada-bags-22.html prada 新作 財布]!ブーム,[http://www.aseanacity.com/webalizer/prada-bags-35.html プラダ 財布 レディース]!ブーム!ブーム,[http://www.aseanacity.com/webalizer/prada-bags-31.html 財布 ブランド プラダ]!平方フィート冷たいボイドが、トロットは屈辱的な、信じられないほど高速です、Zhuimingの死、あらゆるステップの足音のように、追いつくが、内部皆の耳に耳を傾けるが、非常にゆっくりと、モーメントがかけありそうな場合年。この時間は、実際に正確な操作は、考えることができない
The fundamental example of a linear complex structure is the structure on '''R'''<sup>2''n''</sup> coming from the complex structure on '''C'''<sup>''n''</sup>. That is, the complex ''n''-dimensional space '''C'''<sup>''n''</sup> is also a real 2''n''-dimensional space – using the same vector addition and real scalar multiplication – while multiplication by the complex number ''i'' is not only a ''complex'' linear transform of the space, thought of as a complex vector space, but also a ''real'' linear transform of the space, thought of as a real vector space. Concretely, this is because scalar multiplication by ''i'' commutes with scalar multiplication by real numbers  <math>\qquad i (\lambda v) = (i \lambda) v = (\lambda i) v = \lambda (i v)\qquad </math> – and distributes across vector addition. As a complex ''n''×''n'' matrix, this is simply the [[scalar matrix]] with ''i'' on the diagonal. The corresponding real 2''n''×2''n'' matrix is denoted ''J''.
相关的主题文章:
<ul>
 
  <li>[http://www.masterind.net/plus/view.php?aid=376043 「フォース運命は、祝福を奪って、保護をリッピング]</li>
 
  <li>[http://a-g.ru/forum/viewtopic.php?f=2&t=176377  彼らがいた]</li>
 
  <li>[http://www.comune.torino.it/cgi-bin/toweb/jump.cgi 「シェイク風Yaoguang]</li>
 
</ul>


Given a basis <math>\left\{e_1, e_2, \dots, e_n \right\}</math> for the complex space, this set, together with these vectors multiplied by ''i,'' namely <math>\left\{ie_1, ie_2, \dots, ie_n\right\},</math> form a basis for the real space. There are two natural ways to order this basis, corresponding abstractly to whether one writes the tensor product as <math>\mathbf{C}^n = \mathbf{R}^n \otimes_{\mathbf{R}} \mathbf{C}</math> or instead as <math>\mathbf{C}^n = \mathbf{C} \otimes_{\mathbf{R}} \mathbf{R}^n.</math>
== 私はあなたのfeijianを持って、私は将来に向けての練習 ==


If one orders the basis as <math>\left\{e_1, ie_1, e_2, ie_2, \dots, e_n, ie_n\right\},</math> then the matrix for ''J'' takes the [[block diagonal]] form (subscripts added to indicate dimension):
戻り、その後すぐに行く飲み込む、ガツガツと食べる、2血まみれの手の腕を取った。<br>Saは,[http://www.aseanacity.com/webalizer/prada-bags-20.html プラダ 2014 財布]!<br>そのような場合を参照して、ハンサムな悪魔は少し、彼の背中にドリル、今度は遺物に骨の骨の亡霊を、首を横に振った言葉を読んだ,[http://www.aseanacity.com/webalizer/prada-bags-29.html prada 財布 スタッズ]<br>「まあ、それが信号を吸ってみましょう、私はここに、清はない事故,[http://www.aseanacity.com/webalizer/prada-bags-31.html プラダ 財布 中古]。Qishaは神秘主義の多くを使用してそれをホイスト、あなたは超自然ファムを実施していないと言うも、feijianを欠いてはQisha建ジェンが配置されていない良い 'ハンサムな悪魔が先日陽気な寒さを感じて言った:。べきだ」しかし、あなたは私はあなたに7 Feijianをあげる、アクティブ清を守る。'<br>話す、ハンサムな悪魔の指先、7の周り口のfeijianから出現する、または黒、または白、シアン、紫、金色の品質と非常に良いです,[http://www.aseanacity.com/webalizer/prada-bags-29.html プラダ新作バッグ2014]<br>「私の神秘的な武道!スローしますが、互換性のない悪魔の人です,[http://www.aseanacity.com/webalizer/prada-bags-33.html 財布 プラダ]!私はあなたのfeijianを持って、私は将来に向けての練習
:<math>J_{2n} = \begin{bmatrix}
相关的主题文章:
0 & -1 \\
<ul>
1 &  0 \\
 
  &    & 0 & -1 \\
  <li>[http://www.amanana.com/plus/feedback.php?aid=6 ' 大喜び本当の戦いを]</li>
  &    & 1 &  0 \\
 
  &    &  &  & \ddots  \\
  <li>[http://www.xintai.org.cn/plus/feedback.php?aid=268 第二章は超自然教える]</li>
  &    &  &  & & \ddots \\
 
  &    &  &  & &      & 0 & -1 \\
  <li>[http://www.quicksubmit.de/s1/submit.cgi 検査するか]</li>
  &    &  &  & &      & 1 &  0
 
\end{bmatrix}
  </ul>
=
\begin{bmatrix}
J_2                    \\
  & J_2                \\
  &    & \ddots      \\
  &    &        & J_2
\end{bmatrix}.</math>
This ordering has the advantage that it respects direct sums, meaning that the basis for <math>\mathbf{C}^m \oplus \mathbf{C}^n</math> is the same as that for <math>\mathbf{C}^{m+n}.</math>
 
Conversely, if one orders the basis as <math>\left\{e_1,e_2,\dots,e_n, ie_1, ie_2, \dots, ie_n\right\},</math> then the matrix for ''J'' is block-antidiagonal:
:<math>J_{2n} = \begin{bmatrix}0 & -I_n \\ I_n & 0\end{bmatrix}.</math>
This ordering is more natural if one thinks of the real space as a [[#Direct sum|direct sum]], as discussed below.
 
The data of the real vector space and the ''J'' matrix is exactly the same as the data of the complex vector space, as the ''J'' matrix allows one to define complex multiplication. At the level of [[Lie algebra]]s and [[Lie group]]s, this corresponds to the inclusion of gl(''n'','''C''') in gl(2''n'','''R''') (Lie algebras – matrices, not necessarily invertible) and [[GL(n,C)|GL(''n'','''C''')]] in GL(2''n'','''R'''):
:gl(''n'','''C''') <  gl(''2n'','''R''') and GL(''n'','''C''') <  GL(''2n'','''R''').
The inclusion corresponds to forgetting the complex structure (and keeping only the real), while the subgroup GL(''n'','''C''') can be characterized (given in equations) as the matrices that ''commute'' with ''J:''
:GL(''n'','''C''') = <math>\left\{ A \in GL(2n,\mathbf{R}) \mid AJ = JA \right\}.</math>
The corresponding statement about Lie algebras is that the subalgebra gl(''n'','''C''') of complex matrices are those whose [[Lie bracket]] with ''J'' vanishes, meaning <math>[J,A] = 0;</math> in other words, as the kernel of the map of bracketing with ''J,'' <math>[J,-].</math>
 
Note that the defining equations for these statements are the same, as AJ = JA is the same as <math>AJ - JA = 0,</math> which is the same as <math>[A,J] = 0,</math> though the meaning of the Lie bracket vanishing is less immediate geometrically than the meaning of commuting.
 
=== Direct sum ===
If ''V'' is any real vector space there is a canonical complex structure on the [[direct sum of vector spaces|direct sum]] ''V'' ⊕ ''V'' given by
:<math>J(v,w) = (-w,v).\,</math>
The [[block matrix]] form of ''J'' is
:<math>J = \begin{bmatrix}0 & -I_V \\ I_V & 0\end{bmatrix}</math>
where <math>I_V</math> is the identity map on ''V''. This corresponds to the complex structure on the tensor product <math>\mathbf{C} \otimes_{\mathbf{R}} V.</math>
 
==Compatibility with other structures==
 
If ''B'' is a [[bilinear form]] on ''V'' then we say that ''J'' '''preserves''' ''B'' if
:''B''(''Ju'', ''Jv'') = ''B''(''u'', ''v'')
for all ''u'',''v'' in ''V''. An equivalent characterization is that ''J'' is [[skew-adjoint]] with respect to ''B'':
:''B''(''Ju'', ''v'') = &minus;''B''(''u'', ''Jv'')
 
If ''g'' is an [[inner product]] on ''V'' then ''J'' preserves ''g'' if and only if ''J'' is an [[orthogonal transformation]]. Likewise, ''J'' preserves a [[nondegenerate]], [[skew-symmetric]] form ω if and only if ''J'' is a [[symplectic transformation]] (that is, if ω(''Ju'',''Jv'') = ω(''u'',''v'')). For symplectic forms ω there is usually an added restriction for compatibility between ''J'' and ω, namely
:&omega;(''u'', ''Ju'') &gt; 0
for all ''u'' in ''V''. If this condition is satisfied then ''J'' is said to '''tame''' ω.
 
Given a symplectic form ω and a linear complex structure ''J'', one may define an associated symmetric bilinear form ''g''<sub>''J''</sub> on ''V''<sub>''J''</sub>
:''g''<sub>''J''</sub>(''u'',''v'') = ω(''u'',''Jv'').
Because a [[symplectic form]] is nondegenerate, so is the associated bilinear form. Moreover, the associated form is preserved by ''J'' if and only if the symplectic form and if ω is tamed by ''J'' then the associated form is [[definite bilinear form|positive definite]]. Thus in this case the associated form is a [[Hermitian form]] and ''V''<sub>''J''</sub> is an [[inner product space]].
 
==Relation to complexifications==
Given any real vector space ''V'' we may define its [[complexification]] by [[extension of scalars]]:
:<math>V^{\mathbb C}=V\otimes_{\mathbb{R}}\mathbb{C}.</math>
This is a complex vector space whose complex dimension is equal to the real dimension of ''V''. It has a canonical [[complex conjugation]] defined by
:<math>\overline{v\otimes z} = v\otimes\bar z</math>
 
If ''J'' is a complex structure on ''V'', we may extend ''J'' by linearity to ''V''<sup>'''C'''</sup>:
:<math>J(v\otimes z) = J(v)\otimes z.</math>
 
Since '''C''' is [[algebraically closed]], ''J'' is guaranteed to have [[eigenvalue]]s which satisfy λ<sup>2</sup> = &minus;1, namely λ = ±''i''. Thus we may write
:<math>V^{\mathbb C}= V^{+}\oplus V^{-}</math>
where ''V''<sup>+</sup> and ''V''<sup>&minus;</sup> are the [[eigenspace]]s of +''i'' and &minus;''i'', respectively. Complex conjugation interchanges ''V''<sup>+</sup> and ''V''<sup>&minus;</sup>. The projection maps onto the ''V''<sup>±</sup> eigenspaces are given by
:<math>\mathcal P^{\pm} = {1\over 2}(1\mp iJ).</math>
So that
:<math>V^{\pm} = \{v\otimes 1 \mp Jv\otimes i: v \in V\}.</math>
 
There is a natural complex linear isomorphism between ''V''<sub>''J''</sub> and ''V''<sup>+</sup>, so these vector spaces can be considered the same, while ''V''<sup>&minus;</sup> may be regarded as the [[complex conjugate vector space|complex conjugate]] of ''V''<sub>''J''</sub>.
 
Note that if ''V''<sub>''J''</sub> has complex dimension ''n'' then both ''V''<sup>+</sup> and ''V''<sup>&minus;</sup> have complex dimension ''n'' while ''V''<sup>'''C'''</sup> has complex dimension 2''n''.
 
Abstractly, if one starts with a complex vector space ''W'' and takes the complexification of the underlying real space, one obtains a space isomorphic to the direct sum of ''W'' and its conjugate:
:<math>W^{\mathbb C} \cong W\oplus \overline{W}.</math>
 
== Extension to related vector spaces ==
 
Let ''V'' be a real vector space with a complex structure ''J''. The [[dual space]] ''V''* has a natural complex structure ''J''* given by the dual (or [[transpose]]) of ''J''. The complexification of the dual space (''V''*)<sup>'''C'''</sup> therefore has a natural decomposition
 
:<math>(V^*)^\mathbb{C} = (V^*)^{+}\oplus (V^*)^-</math>
 
into the ±''i'' eigenspaces of ''J''*. Under the natural identification of (''V''*)<sup>'''C'''</sup> with (''V''<sup>'''C'''</sup>)* one can characterize (''V''*)<sup>+</sup> as those complex linear functionals which vanish on ''V''<sup>&minus;</sup>. Likewise (''V''*)<sup>&minus;</sup> consists of those complex linear functionals which vanish on ''V''<sup>+</sup>.
 
The (complex) [[tensor algebra|tensor]], [[symmetric algebra|symmetric]], and [[exterior algebra]]s over ''V''<sup>'''C'''</sup> also admit decompositions. The exterior algebra is perhaps the most important application of this decomposition. In general, if a vector space ''U'' admits a decomposition ''U'' = ''S'' ⊕ ''T'' then the exterior powers of ''U'' can be decomposed as follows:
:<math>\Lambda^r U = \bigoplus_{p+q=r}(\Lambda^p S)\otimes(\Lambda^q T).</math>
 
A complex structure ''J'' on ''V'' therefore induces a decomposition
:<math>\Lambda^r\,V^\mathbb{C} = \bigoplus_{p+q=r} \Lambda^{p,q}\,V_J</math>
where
:<math>\Lambda^{p,q}\,V_J\;\stackrel{\mathrm{def}}{=}\, (\Lambda^p\,V^+)\otimes(\Lambda^q\,V^-).</math>
All exterior powers are taken over the complex numbers. So if ''V''<sub>''J''</sub> has complex dimension ''n'' (real dimension 2''n'') then
 
:<math>\dim_{\mathbb C}\Lambda^{r}\,V^{\mathbb C} = {2n\choose r}\qquad \dim_{\mathbb C}\Lambda^{p,q}\,V_J = {n \choose p}{n \choose q}.</math>
The dimensions add up correctly as a consequence of [[Vandermonde's identity]].
 
The space of (''p'',''q'')-forms Λ<sup>''p'',''q''</sup> ''V''<sub>''J''</sub>*  is the space of (complex) [[multilinear form]]s on ''V''<sup>'''C'''</sup> which vanish on homogeneous elements unless ''p'' are from ''V''<sup>+</sup> and ''q'' are from ''V''<sup>&minus;</sup>. It is also possible to regard Λ<sup>''p'',''q''</sup> ''V''<sub>''J''</sub>* as the space of real [[multilinear map]]s from ''V''<sub>''J''</sub> to '''C''' which are complex linear in ''p'' terms and [[conjugate-linear]] in ''q'' terms.
 
See [[complex differential form]] and [[almost complex manifold]] for applications of these ideas.
 
==See also==
* [[Almost complex manifold]]
* [[Complex manifold]]
* [[Complex differential form]]
* [[Complex conjugate vector space]]
* [[Hermitian structure]]
* [[Real structure]]
 
==References==
* Kobayashi S. and Nomizu K., [[Foundations of Differential Geometry]], John Wiley & Sons, 1969. ISBN 0-470-49648-7. (complex structures are discussed in Volume II, Chapter IX, section 1).
* Budinich, P. and Trautman, A. ''The Spinorial Chessboard'', Spinger-Verlag, 1988. ISBN 0-387-19078-3. (complex structures are discussed in section 3.1).
* Goldberg S.I., ''Curvature and Homology'', Dover edition, 1982. ISBN 0-486-64314-X. (complex structures and almost complex manifolds are discussed in section 5.2).
 
[[Category:Structures on manifolds]]

Latest revision as of 22:57, 7 August 2014

and all by the official to master. Official among the monks

Dark nodded and found the origin of the ruling dynasty ability to much more tyrannical than heaven, is simply a secular equivalent of the dynasty, in the city among the many countless general, the construction of a number of official ...
no mistake, that is official.
example, some such as the emergence door Plains city, was originally feathering door monopoly of power, but among the different origins of the dynasty,プラダ スタッズ 財布, is set dynasty of rulers, and all by the official to master. Official among the monks, is the origin of the tyrannical reign of the monks, everything dynasty service for those major sects,プラダ 財布 迷彩, big family, to respect the official's ruling, otherwise would be consumed.
flight,プラダ 財布 新作 2014, square cold white feather,財布 プラダ レディース, who would gradually close an enormous Imperial, this imperial city, stands in the center of the world, magnificent,プラダ 財布 アウトレット, majestic, hundreds of millions Rays, Bling, the world was a brightly illuminated, heaven Big day in front of the Imperial City have lost glory. 相关的主题文章:

feel the cold side has some wrong.

Chapter two hundred seventeen thousands of stone soldiers,財布 ブランド プラダ
Fang Shi Huang cold and xiǎo outdone, but did not sell.
between him speak, God sè freely, but the whole body infuriating began probing out,prada トートバッグ, look at the stone house of being,prada ベルト, in the end there is no ambush, the stone temple below, in the end is what kind of repression of the existence, or What xiǎo Songteng Fei Shi Huang yīn seek.
xiǎo stone in front of the emperor, definitely not an ordinary corner sè, state parties can be said with cold encountered among the most formidable one corner sè,プラダ スタッズ 財布, watching his momentum, and Gods stone together, the distribution Wang Pin cents out waves of breath, feel the cold side has some wrong.
go wrong but wrong side cold in this life, encountered strong winds large làng, do not know how much, but also do not care the slightest bit.
'too one mén Son, is not here,プラダ人気財布, I'm taking 相关的主题文章:

Huangfu天軍などの他の側は、そのような人を見たことがない

全くパニックはありませんが、退廃的な、人々は彼が天軍だと思います。
Huangfu天軍などの他の側は、そのような人を見たことがない,プラダ 財布
天才彼はガンジス流砂を見て、より一般的には、しかし、低温側のようなので、穏やかで、天軍の顔に作曲が全く1確かにまた興奮殺すように,プラダ 財布 定価
「あなたが望むように,プラダ 財布 スタッズ。 ' そのようなひどい若者が、彼が長く成長させないことを知って、セットアップ反対側を殺すために
Huangfuの心。場合、後に至高天軍の領域に到達するために昇進し、私はライバルの彼らのこれまで以上に恐れている。
側寒い今、反対側はHuangfu無制限の危険を感じる可能性のある、天軍に昇格した場合,プラダ 財布 迷彩
しゃぶしゃぶ,プラダ ピンク 財布! オオタカBotuは、まっすぐ下に冷たいの側に面し、降りてくるように抑制を殴る、彼を
、指が再び苦味の高騰海、ローリング波、巨大な波の中で登場し、波がヘビを発見された 相关的主题文章:

マジック本当に怒っ神々が微笑んで言った '

マジック本当に怒っ神々が微笑んで言った '!ハハ、私は、それはあなたが夢を見ている夢だったでしょうね」「私は家族のことができます。とても大きくなりますときに、私にこれを行うに今日では、カルマ、ない悪い気分'
「あなたは、私は、あなたがあなたの思考のいずれかが、あなたトスパワフルも絞り出されている置くことができる無数の秘密法を知っている、それは問題ではないと言っていませんが、それは悪魔が崩壊していないです。**,プラダ 財布 値段。「白い羽微風チャンネル、もはや、手でお願いしますタイト、ビッグバン,プラダ ハンドバッグ!マジックは本当に神々が逃げる思考の多くが続く、多数のグループの強さを非難したが、すべては風の手の中に巻き込ま白い羽であった,prada 財布 人気
白色結晶の塊があり、体内での「真の魔法の神々」のストレージスペースは、直接投げパーティの寒さです。
一つの神々は、風が白い羽を望んでいません,prada
「残念ながら、私には神々は、彼らがああ一枚超自然果物に変更することができますが、それは散乱される,prada リボン 財布。「密か残念ながらサイドでちょっと、そのような物の存在を 相关的主题文章:

「この人、実際にそんなに

多くの偉大なブラックホール、およびいくつかの大きなブラックホールがあった中心に向かって集中力、空気は、いくつかのも架空の霊の世界につながる、いくつかはドラゴンの世界につながる、仏教界をリードして、通信が時間に一度あります。奇妙な力の場になり、これらのブラックホール、別の後に相次いで、さまざまな力、ねじれ、スピン、。 デュークの体がひどく少し歪んでいた8のうち、この奇妙な力場におけるhuan​​hangrn、すべての人の体は、引き裂かれた感じの波を生み出しています,prada 財布 リボン
「この人、実際にそんなに! ' デュークのすべてを
、完全にショックを受け、すぐに後退している,プラダ 財布 リボン
ブーム!ブーム,prada 新作 財布!ブーム,プラダ 財布 レディース!ブーム!ブーム,財布 ブランド プラダ!平方フィート冷たいボイドが、トロットは屈辱的な、信じられないほど高速です、Zhuimingの死、あらゆるステップの足音のように、追いつくが、内部皆の耳に耳を傾けるが、非常にゆっくりと、モーメントがかけありそうな場合年。この時間は、実際に正確な操作は、考えることができない 相关的主题文章:

私はあなたのfeijianを持って、私は将来に向けての練習

戻り、その後すぐに行く飲み込む、ガツガツと食べる、2血まみれの手の腕を取った。
Saは,プラダ 2014 財布
そのような場合を参照して、ハンサムな悪魔は少し、彼の背中にドリル、今度は遺物に骨の骨の亡霊を、首を横に振った言葉を読んだ,prada 財布 スタッズ
「まあ、それが信号を吸ってみましょう、私はここに、清はない事故,プラダ 財布 中古。Qishaは神秘主義の多くを使用してそれをホイスト、あなたは超自然ファムを実施していないと言うも、feijianを欠いてはQisha建ジェンが配置されていない良い 'ハンサムな悪魔が先日陽気な寒さを感じて言った:。べきだ」しかし、あなたは私はあなたに7 Feijianをあげる、アクティブ清を守る。'
話す、ハンサムな悪魔の指先、7の周り口のfeijianから出現する、または黒、または白、シアン、紫、金色の品質と非常に良いです,プラダ新作バッグ2014
「私の神秘的な武道!スローしますが、互換性のない悪魔の人です,財布 プラダ!私はあなたのfeijianを持って、私は将来に向けての練習 相关的主题文章: