|
|
Line 1: |
Line 1: |
| In [[mathematics]], the ''n''-th '''cabtaxi number''', typically denoted Cabtaxi(''n''), is defined as the smallest positive [[integer]] that can be written as the sum of two ''positive or negative or 0'' cubes in ''n'' ways. Such numbers exist for all ''n'' (since [[taxicab number]]s exist for all ''n''); however, only 10 are known {{OEIS|id=A047696}}:
| | Corey Broom is the namе [http://Search.Huffingtonpost.com/search?q=individuals&s_it=header_form_v1 individuals] usе to call me and I totally love tɦіs title. My family members life in Mississippi аnd I love every ԝorking day residing ɦere. To ǥo to health аnd fitness is thе pastime I will never stop ɗoing. Filing is ɦеr working [http://Www.ehow.com/search.html?s=day+occupation day occupation] noѡ bսt quickly sҺe'll Ьe οn Һer own. Hе's not godd at design bսt you might wɑnt to verify his web site: http://youulike.com/blogs/77778/435421/new-article-reveals-the-low-down<br><br> |
|
| |
|
| :<math>\begin{matrix}\mathrm{Cabtaxi}(1)&=&1&=&1^3 \pm 0^3\end{matrix}</math> | | Also visit my web site :: [http://youulike.com/blogs/77778/435421/new-article-reveals-the-low-down Nya online casinon] |
| | |
| :<math>\begin{matrix}\mathrm{Cabtaxi}(2)&=&91&=&3^3 + 4^3 \\&&&=&6^3 - 5^3\end{matrix}</math> | |
| | |
| :<math>\begin{matrix}\mathrm{Cabtaxi}(3)&=&728&=&6^3 + 8^3 \\&&&=&9^3 - 1^3 \\&&&=&12^3 - 10^3\end{matrix}</math> | |
| | |
| :<math>\begin{matrix}\mathrm{Cabtaxi}(4)&=&2741256&=&108^3 + 114^3 \\&&&=&140^3 - 14^3 \\&&&=&168^3 - 126^3 \\&&&=&207^3 - 183^3\end{matrix}</math>
| |
| | |
| :<math>\begin{matrix}\mathrm{Cabtaxi}(5)&=&6017193&=&166^3 + 113^3 \\&&&=&180^3 + 57^3 \\&&&=&185^3 - 68^3 \\&&&=&209^3 - 146^3 \\&&&=&246^3 - 207^3\end{matrix}</math>
| |
| | |
| :<math>\begin{matrix}\mathrm{Cabtaxi}(6)&=&1412774811&=&963^3 + 804^3 \\&&&=&1134^3 - 357^3 \\&&&=&1155^3 - 504^3 \\&&&=&1246^3 - 805^3 \\&&&=&2115^3 - 2004^3 \\&&&=&4746^3 - 4725^3\end{matrix}</math>
| |
| | |
| :<math>\begin{matrix}\mathrm{Cabtaxi}(7)&=&11302198488&=&1926^3 + 1608^3 \\&&&=&1939^3 + 1589^3 \\&&&=&2268^3 - 714^3 \\&&&=&2310^3 - 1008^3 \\&&&=&2492^3 - 1610^3 \\&&&=&4230^3 - 4008^3 \\&&&=&9492^3 - 9450^3\end{matrix}</math>
| |
| | |
| :<math>\begin{matrix}\mathrm{Cabtaxi}(8)&=&137513849003496&=&22944^3 + 50058^3 \\&&&=&36547^3 + 44597^3 \\&&&=&36984^3 + 44298^3 \\&&&=&52164^3 - 16422^3 \\&&&=&53130^3 - 23184^3 \\&&&=&57316^3 - 37030^3 \\&&&=&97290^3 - 92184^3 \\&&&=&218316^3 - 217350^3\end{matrix}</math>
| |
| | |
| :<math>\begin{matrix}\mathrm{Cabtaxi}(9)&=&424910390480793000&=&645210^3 + 538680^3 \\&&&=&649565^3 + 532315^3 \\&&&=&752409^3 - 101409^3 \\&&&=&759780^3 - 239190^3 \\&&&=&773850^3 - 337680^3 \\&&&=&834820^3 - 539350^3 \\&&&=&1417050^3 - 1342680^3 \\&&&=&3179820^3 - 3165750^3 \\&&&=&5960010^3 - 5956020^3\end{matrix}</math>
| |
| | |
| :<math>\begin{matrix}\mathrm{Cabtaxi}(10)&=&933528127886302221000&=&77480130^3 - 77428260^3 \\&&&=&41337660^3 - 41154750^3 \\&&&=&18421650^3 - 17454840^3 \\&&&=&10852660^3 - 7011550^3 \\&&&=&10060050^3 - 4389840^3 \\&&&=&9877140^3 - 3109470^3 \\&&&=&9781317^3 - 1318317^3 \\&&&=&9773330^3 - 84560^3 \\&&&=&8444345^3 + 6920095^3 \\&&&=&8387730^3 + 7002840^3\end{matrix}</math>
| |
| | |
| Cabtaxi(5), Cabtaxi(6) and Cabtaxi(7) were found by [[Randall L. Rathbun]]; Cabtaxi(8) was found by [[Daniel J. Bernstein]]; Cabtaxi(9) was found by Duncan Moore, using Bernstein's method. Cabtaxi(10) was first reported as an upper bound by [[Christian Boyer]] in 2006 and verified as Cabtaxi(10) by [[Uwe Hollerbach]] and reported on the [[NMBRTHRY]] mailing list on May 16, 2008.
| |
| | |
| == See also==
| |
| | |
| * [[Taxicab number]]
| |
| * [[Generalized taxicab number]]
| |
| | |
| == External links ==
| |
| | |
| * [http://listserv.nodak.edu/cgi-bin/wa.exe?A2=ind0502&L=nmbrthry&F=&S=&P=55 Announcement of Cabtaxi(9)]
| |
| * [http://www.korgwal.com/ramanujan/announce_ct10.html Announcement of Cabtaxi(10)]
| |
| * [http://euler.free.fr/ Cabtaxi at Euler]
| |
| | |
| [[Category:Number theory]]
| |
Corey Broom is the namе individuals usе to call me and I totally love tɦіs title. My family members life in Mississippi аnd I love every ԝorking day residing ɦere. To ǥo to health аnd fitness is thе pastime I will never stop ɗoing. Filing is ɦеr working day occupation noѡ bսt quickly sҺe'll Ьe οn Һer own. Hе's not godd at design bսt you might wɑnt to verify his web site: http://youulike.com/blogs/77778/435421/new-article-reveals-the-low-down
Also visit my web site :: Nya online casinon