Dirichlet L-function: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
en>Spectral sequence
Zeros of the Dirichlet L-functions: example zero-free region, cite Montgomery
 
Line 1: Line 1:
{{refimprove|date=March 2011}}
I am Zelda and was born on 16 November 1979. My hobbies are Australian Football League and Juggling.<br><br>Review my web-site - Oltramare ([http://www.moneyhouse.ch/fr/u/fondation_yves_et_inez_oltramare_CH-660.0.989.995-9.htm www.moneyhouse.ch])
The '''Knudsen number''' ('''Kn''') is a [[dimensionless number]] defined as the [[ratio]] of the molecular [[mean free path]] length to a representative physical length [[scale (ratio)|scale]]. This length scale could be, for example, the [[radius]] of the body in a fluid. The number is named after [[Denmark|Danish]] physicist [[Martin Knudsen]] (1871&ndash;1949).
 
==Definition==
The Knudsen number is a dimensionless number defined as:
 
:<math>\mathrm{Kn} = \frac {\lambda}{L}</math>
 
where
 
* <math>\lambda</math> = [[mean free path]] [L<sup>1</sup>]
* <math>L</math> = representative physical length scale [L<sup>1</sup>].
 
For a [[Boltzmann]] gas, the [[mean free path]] may be readily calculated so that:
 
:<math>\mathrm{Kn} = \frac {k_B T}{\sqrt{2}\pi\sigma^2 p L}</math>
 
where
* <math>k_B</math> is the [[Boltzmann constant]] (1.3806504(24) × 10<sup>−23</sup> J/K in [[SI]] units), [M<sup>1</sup> L<sup>2</sup> T<sup>-2</sup> θ<sup>-1</sup>]
* <math>T</math> is the [[thermodynamic temperature]], [θ<sup>1</sup>]
* <math>\sigma</math> is the particle hard shell diameter, [L<sup>1</sup>]
* <math>p</math> is the total pressure, [M<sup>1</sup> L<sup>-1</sup> T<sup>-2</sup>].
 
For particle dynamics in the [[atmosphere]], and assuming [[standard temperature and pressure]], i.e. 25 °C and 1 atm, we have <math>\lambda</math> ≈ 8 × 10<sup>−8</sup> m.
 
==Relationship to Mach and Reynolds numbers in gases==
The Knudsen number can be related to the [[Mach number]] and the [[Reynolds number]]:
 
Noting the following:
 
[[Dynamic viscosity]],
:<math>\mu =\frac{1}{2}\rho  \bar{c} \lambda.</math>
 
Average molecule speed (from [[Maxwell-Boltzmann distribution]]),
:<math>\bar{c} = \sqrt{\frac{8 k_BT}{\pi  m}}</math>
 
thus the mean free path,
:<math>\lambda =\frac{\mu }{\rho }\sqrt{\frac{\pi  m}{2 k_BT}}</math>
 
dividing through by ''L'' (some characteristic length) the Knudsen number is obtained:
:<math>\frac{\lambda }{L}=\frac{\mu }{\rho  L}\sqrt{\frac{\pi  m}{2 k_BT}}</math>
 
where
* ''<math>\bar{c}</math>'' is the average molecular speed from the [[Maxwell–Boltzmann distribution]], [L<sup>1</sup> T<sup>-1</sup>]
* ''T'' is the [[thermodynamic temperature]], [θ<sup>1</sup>]
* ''μ'' is the [[dynamic viscosity]], [M<sup>1</sup> L<sup>-1</sup> T<sup>-1</sup>]
* ''m'' is the [[molecular mass]], [M<sup>1</sup>]
* ''k<sub>B</sub>'' is the [[Boltzmann constant]], [M<sup>1</sup> L<sup>2</sup> T<sup>-2</sup> θ<sup>-1</sup>]
* ''ρ'' is the density, [M<sup>1</sup> L<sup>-3</sup>].
 
The dimensionless Mach number can be written:
:<math>\mathrm{Ma} = \frac {U_\infty}{c_s}</math>
 
where the speed of sound is given by
:<math>c_s=\sqrt{\frac{\gamma  R T}{M}}=\sqrt{\frac{\gamma  k_BT}{m}}</math>
 
where
* ''U<sub>∞</sub>'' is the freestream speed, [L<sup>1</sup> T<sup>-1</sup>]
* ''R'' is the Universal [[gas constant]], (in [[SI]], 8.314 47215 J K<sup>−1</sup> mol<sup>−1</sup>), [M<sup>1</sup> L<sup>2</sup> T<sup>-2</sup> θ<sup>-1</sup> 'mol'<sup>-1</sup>]
* ''M'' is the [[molar mass]], [M<sup>1</sup> 'mol'<sup>-1</sup>]
* <math>\gamma</math> is the [[ratio of specific heats]], and is dimensionless.
 
The dimensionless [[Reynolds number]] can be written:
:<math>\mathrm{Re} = \frac {\rho  U_\infty L}{\mu}.</math>
 
Dividing the Mach number by the Reynolds number,
 
:<math>\frac{\mathrm{Ma}}{\mathrm{Re}}=\frac{U_\infty /  c_s}{\rho  U_\infty L /  \mu }=\frac{\mu }{\rho  L c_s}=\frac{\mu }{\rho  L \sqrt{\frac{\gamma  k_BT}{m}}}=\frac{\mu }{\rho  L }\sqrt{\frac{m}{\gamma  k_BT}}</math>
 
and by multiplying by <math>\sqrt{\frac{\gamma  \pi }{2}}</math>,
 
:<math>\frac{\mu }{\rho  L }\sqrt{\frac{m}{\gamma  k_BT}}\sqrt{\frac{\gamma  \pi }{2}}=\frac{\mu }{\rho  L }\sqrt{\frac{\pi  m}{2k_BT}}=\frac{1}{\nu  L }\sqrt{\frac{\pi  m}{2k_BT}} = \mathrm{Kn}</math>
 
yields the Knudsen number.
 
The Mach, Reynolds and Knudsen numbers are therefore related by:
 
:<math>\mathrm{Kn} = \frac{\mathrm{Ma}}{\mathrm{Re}} \; \sqrt{ \frac{\gamma \pi}{2}}.</math>
 
==Application==
 
The Knudsen number is useful for determining whether [[statistical mechanics]] or the [[continuum mechanics]] formulation of [[fluid dynamics]] should be used: If the Knudsen number is near or greater than one, the mean free path of a molecule is comparable to a length scale of the problem, and the continuum assumption of [[fluid mechanics]] is no longer a good approximation.  In this case statistical methods must be used.
 
Problems with high Knudsen numbers include the calculation of the motion of a [[dust]] particle through the lower [[Earth's atmosphere|atmosphere]], or the motion of a [[satellite]] through the [[exosphere]]. One of the most widely used applications for the Knudsen number is in [[microfluidics]] and [[MEMS]] device design. The solution of the flow around an [[aircraft]] has a low Knudsen number, making it firmly in the realm of continuum mechanics. Using the Knudsen number an adjustment for [[Stokes' Law]] can be used in the [[Cunningham correction factor]], this is a drag force correction due to slip in small particles (i.e. ''d''<sub>''p''</sub>&nbsp;< 5 µm).
 
==See also==
* [[Cunningham correction factor]]
* [[Fluid dynamics]]
* [[Mach number]]
* [[Knudsen Flow]]
* [[Knudsen diffusion]]
 
== References ==
* {{cite book|last=Cussler|first=E. L.|title=Diffusion: Mass Transfer in Fluid Systems|publisher=Cambridge University Press|year=1997|isbn=0-521-45078-0}}
 
{{NonDimFluMech}}
 
[[Category:Dimensionless numbers]]
[[Category:Fluid dynamics]]

Latest revision as of 22:16, 19 August 2014

I am Zelda and was born on 16 November 1979. My hobbies are Australian Football League and Juggling.

Review my web-site - Oltramare (www.moneyhouse.ch)