|
|
Line 1: |
Line 1: |
| '''Tabu search''', created by [[Fred W. Glover]] in 1986<ref name="glover86">{{cite journal
| | This is a strategy and as well as battle activation where the person must manage your man or women tribe and also protect it from punctures. You have so that it will build constructions which would provide protection for your soldiers along with our instruction. First concentrate on your protection and consequently after its recently ended up taken treatment. You might need to move forward by means of the criminal offense process. As well as our Military facilities, you likewise require to keep in minds the way your indigneous group is certainly going. If you have any thoughts regarding exactly where and how to use [http://prometeu.net clash of clans hack no survey mac], you can contact us at the internet site. For instance, collecting learning websites as well as escalating your own tribe may be the key to good findings.<br><br>To comprehend coins and gems, creosote is the obtain the Clash regarding Clans hack equipment by the clicking on the get a hold of button. Contingent by the operating framework that the utilizing, you will go the downloaded document as admin. Furnish a person's log in Id and choose the gadget. Immediately after this, you are to get in the quantity of necklaces or coins that individuals and start off one particular Clash of Clans crack instrument.<br><br>Video games are very well-liked many homes. The associated with people perform [http://Www.sharkbayte.com/keyword/online+online online online] games to pass through time, however, some blessed people are paid to experience clash of clans sur pc. Casino is going to grow to be preferred for some time into the future. These tips will an individual if you are going try out online.<br><br>On the internet games acquire more in order to really offer your son aka daughter than only a possibility to capture points. Try deciding on dvds that instruct your young person some thing. Basically an example, sports situations video games will make it possible to your youngster learn guidelines for game titles, and exactly how web based games are played out and about. Check out some testimonials to actually discover game titles which experts claim supply a learning information instead of just mindless, repeated motion.<br><br>Sensei Wars, the feudal Japan-themed Clash of Clans Secrets attacker from 2K, holds aloof accustomed its aboriginal agreeable amend again the actual barrage on iOS aftermost 12 ,.<br><br>In are playing a dressing in game, and you don't any experience with it, set the difficulty intensity to rookie. This is considered help you pick moving up on the unique makes use of of the game and learn your way in the vicinity of the field. If you find you set it large than that, you are usually to get frustrated and simply not have any pleasure.<br><br>Test drive to restrain your major gaming to only a kind of machine. Buying all the good consoles plus a gaming-worthy personal computer can demand up to thousands, just exactly in hardware. Yet, most big titles would probably be available on near all of them. Choose one platform to assist you stick with for monetary. |
| | author = Fred Glover
| |
| | year = 1986
| |
| | title = Future Paths for Integer Programming and Links to Artificial Intelligence
| |
| | journal = Computers and Operations Research
| |
| | volume = 13
| |
| | issue = 5
| |
| | pages = 533–549
| |
| }}
| |
| </ref> and formalized in 1989,<ref name="glover89">{{cite journal
| |
| | author = Fred Glover
| |
| | year = 1989
| |
| | title = Tabu Search - Part 1
| |
| | journal = ORSA Journal on Computing
| |
| | volume = 1
| |
| | issue= 2
| |
| | pages = 190–206
| |
| }}
| |
| </ref><ref name="glover90">{{cite journal
| |
| | author = Fred Glover
| |
| | year = 1990
| |
| | title = Tabu Search - Part 2
| |
| | journal = ORSA Journal on Computing
| |
| | volume = 2
| |
| | issue= 1
| |
| | pages = 4–32
| |
| }}
| |
| </ref> is a [[metaheuristic]] search method employing [[Local search (optimization)|local search]] methods used for [[optimization (mathematics)|mathematical optimization]].
| |
| | |
| [[local search (optimization)|Local (neighborhood) searches]] take a potential solution to a problem and check its immediate neighbors (that is, solutions that are similar except for one or two minor details) in the hope of finding an improved solution. Local search methods have a tendency to become stuck in suboptimal regions or on plateaus where many solutions are equally fit.
| |
| | |
| Tabu search enhances the performance of these techniques by using memory structures that describe the visited solutions or user-provided sets of rules.<ref name="glover89"/> If a potential solution has been previously visited within a certain short-term period or if it has violated a rule, it is marked as "[[taboo|tabu]]" (forbidden) so that the [[algorithm]] does not consider that possibility repeatedly.
| |
| | |
| ==Background==
| |
| | |
| The word 'tabu' comes from ''Tongan'', a language of [[Polynesia]], used by the aborigines of [[Tonga]] to indicate things that cannot be touched because they are sacred.<ref>http://www.ise.ncsu.edu/fangroup/ie789.dir/IE789F_tabu.pdf</ref>
| |
| | |
| Tabu search (TS) is a [[metaheuristic]] algorithm that can be used for solving [[combinatorial optimization]] problems (problems where an optimal ordering and selection of options is desired).
| |
| | |
| Current applications of TS span the areas of [[resource planning]], telecommunications, [[VLSI design]], financial analysis, scheduling, space planning, energy distribution, molecular engineering, logistics, [[pattern classification]], flexible manufacturing, waste management, mineral exploration, biomedical analysis, environmental conservation and scores of others. In recent years, journals in a wide variety of fields have published tutorial articles and computational studies documenting successes by tabu search in extending the frontier of problems that can be handled effectively — yielding solutions whose quality often significantly surpasses that obtained by methods previously applied. A comprehensive list of applications, including summary descriptions of gains achieved from practical implementations, can be found in <ref name="gloverlaguna1997">{{cite book
| |
| | author = F. Glover, M. Laguna | |
| | year = 1997
| |
| | title = Tabu Search
| |
| | journal = Kluwer Academic Publishers
| |
| }}</ref> Recent TS developments and applications can also be found in [http://leeds-faculty.colorado.edu/glover/tabusearchvignettes.html Tabu Search Vignettes].
| |
| | |
| ==Basic Description==
| |
| | |
| Tabu search uses a [[local search (optimization)|local or neighborhood]] search procedure to iteratively move from one potential solution <math>x</math> to an improved solution <math>x'</math> in the neighborhood of <math>x</math>, until some stopping criterion has been satisfied (generally, an attempt limit or a score threshold). Local search procedures often become stuck in poor-scoring areas or areas where scores plateau. In order to avoid these pitfalls and explore regions of the [[Mathematical optimization#Optimization problems|search space]] that would be left unexplored by other local search procedures, tabu search carefully explores the neighborhood of each solution as the search progresses. The solutions admitted to the new neighborhood, <math>N^*(x)</math>, are determined through the use of memory structures. Using these memory structures, the search progresses by iteratively moving from the current solution <math>x</math> to an improved solution <math>x'</math> in <math>N^*(x)</math>.
| |
| | |
| These memory structures form what is known as the ''tabu list'', a set of rules and banned solutions used to filter which solutions will be admitted to the neighborhood <math>N^*(x)</math> to be explored by the search. In its simplest form, a tabu list is a short-term set of the solutions that have been visited in the recent past (less than <math>n</math> iterations ago, where <math>n</math> is the number of previous solutions to be stored - is also called the tabu tenure). More commonly, a tabu list consists of solutions that have changed by the process of moving from one solution to another. It is convenient, for ease of description, to understand a “solution” to be coded and represented by such attributes.
| |
| | |
| ==Types of Memory==
| |
| The memory structures used in tabu search can roughly be divided into three categories:<ref name="glover90b">{{cite journal
| |
| | author = Fred Glover
| |
| | year = 1990
| |
| | title = Tabu Search: A Tutorial
| |
| | journal = Interfaces
| |
| }}
| |
| </ref>
| |
| | |
| • Short-term: The list of solutions recently considered. If a potential solution appears on the tabu list, it cannot be revisited until it reaches an expiration point.
| |
| | |
| • Intermediate-term: Intensification rules intended to bias the search towards promising areas of the search space.
| |
| | |
| • Long-term: Diversification rules that drive the search into new regions (i.e. regarding resets when the search becomes stuck in a plateau or a suboptimal dead-end).
| |
| | |
| Short-term, intermediate-term and long-term memories can overlap in practice. Within these categories, memory can further be differentiated by measures such as frequency and impact of changes made. One example of an intermediate-term memory structure is one that prohibits or encourages solutions that contain certain attributes (e.g., solutions which include undesirable or desirable values for certain variables) or a memory structure that prevents or induces certain moves (e.g. based on frequency memory applied to solutions sharing features in common with unattractive or attractive solutions found in the past). In short-term memory, selected attributes in solutions recently visited are labeled "tabu-active." Solutions that contain tabu-active elements are banned. Aspiration criteria are employed that override a solution's tabu state, thereby including the otherwise-excluded solution in the allowed set (provided the solution is “good enough” according to a measure of quality or diversity). A simple and commonly used aspiration criterion is to allow solutions which are better than the currently-known best solution.
| |
| | |
| Short-term memory alone may be enough to achieve solution superior to those found by conventional local search methods, but intermediate and long-term structures are often necessary for solving harder problems.<ref name="malek89">{{cite book
| |
| | author = M. Malek, M. Huruswamy, H. Owens, M. Pandya
| |
| | year = 1989
| |
| | title = Serial and parallel search techniques for the traveling salesman problem
| |
| | journal = Annals of OR: Linkages with Artificial Intelligence
| |
| }}</ref> Tabu search is often benchmarked against other [[metaheuristic]] methods - such as [[Simulated annealing]], [[genetic algorithm]]s, [[Ant colony optimization algorithms]], [[Reactive search optimization]], [[Guided Local Search]], or [[greedy randomized adaptive search procedure|greedy randomized adaptive search]]. In addition, tabu search is sometimes combined with other metaheuristics to create hybrid methods. The most common tabu search hybrid arises by joining TS with Scatter Search,<ref name="glover2000">{{cite book
| |
| | author = F. Glover, M. Laguna and R. Marti
| |
| | year = 2000
| |
| | title = Fundamentals of Scatter Search and Path Relinking
| |
| | journal = Control and Cybernetics
| |
| | volume = 29
| |
| | issue = 3
| |
| | pages = 653–684
| |
| }}</ref><ref name="laguna2003">{{cite book
| |
| | author = M. Laguna and R. Marti
| |
| | year = 2003
| |
| | title = Scatter Search: Methodology and Implementations in C
| |
| | journal = Kluwer Academic Publishers, Boston
| |
| }}</ref> a class of population-based procedures which has roots in common with tabu search, and is often employed in solving large non-linear optimization problems.
| |
| | |
| == Pseudocode ==
| |
| | |
| The following [[pseudocode]], adapted from,<ref>[http://www.cleveralgorithms.com/nature-inspired/stochastic/tabu_search.html Clever Algorithms - Tabu Search]</ref> presents a simplified version of the tabu search algorithm as described above. This implementation has a rudimentary short-term memory, but contains no intermediate or long-term memory structures. The term "fitness" refers to an evaluation of the candidate solution, as embodied in an objective function for mathematical optimization. | |
| | |
| <code> | |
| 1: s ← s0
| |
| 2: sBest ← s
| |
| 3: tabuList ← null
| |
| 4: while (not stoppingCondition())
| |
| 5: candidateList ← null
| |
| 6: for(sCandidate in sNeighborhood)
| |
| 7: if(not containsTabuElements(sCandidate, tabuList))
| |
| 8: candidateList ← candidateList + sCandidate
| |
| 9: end
| |
| 10: end
| |
| 11: sCandidate ← LocateBestCandidate(candidateList)
| |
| 12: if(fitness(sCandidate) > fitness(sBest))
| |
| 13: tabuList ← featureDifferences(sCandidate, sBest)
| |
| 14: sBest ← sCandidate
| |
| 15: while(size(tabuList) > maxTabuListSize)
| |
| 16: ExpireFeatures(tabuList)
| |
| 17: end
| |
| 18: end
| |
| 19: end
| |
| 20: return(sBest)
| |
| </code> | |
| | |
| Lines 1-3 represent some initial setup, respectively creating an initial solution (possibly chosen at random), setting that initial solution as the best seen to date, and initializing an empty tabu list. In this example, the tabu list is simply a short term memory structure that will contain a record of the elements of the states visited.
| |
| | |
| The proper algorithm starts in line 4. This loop will continue searching for an optimal solution until a user-specified stopping condition is met (two examples of such conditions are a simple time limit or a threshold on the fitness score). In line 5, an empty candidate list is initialized. The neighboring solutions are checked for tabu elements in line 7. If the solution does not contain elements on the tabu list, it is added to the candidate list (line 8).
| |
| | |
| The best candidate on the candidate list is chosen in line 11 (generally, solutions are evaluated according to a provided mathematical function, which returns a fitness score). If that candidate has a higher fitness value than the current best (line 12), its features are added to the tabu list (line 13) and it is set as the new best (line 14). At this point, if the tabu list is full (line 15), some elements will be allowed to expire (line 16). Generally, elements expire from the list in the same order they are added.
| |
| | |
| This process continues until the user specified stopping criterion is met, at which point, the best solution seen during the search process is returned (line 20). | |
| | |
| ==Example: Traveling salesman problem==
| |
| | |
| The [[traveling salesman problem]] (TSP) is sometimes used to show the functionality of tabu search.<ref name="malek89"/> This problem poses a straightforward question – given a list of cities, what is the shortest route that visits every city? For example, if city A and city B are next to each other, while city C is farther away, the total distance traveled will be shorter if cities A and B are visited one after the other before visiting city C. Since finding an optimal solution is [[NP-hard]], heuristic-based approximation methods (such as local searches) are useful for devising close-to-optimal solutions. To obtain good TSP solutions, it is essential to exploit the graph structure. The value of exploiting problem structure is a recurring theme in metaheuristic methods, and tabu search is well-suited to this. A class of strategies associated with tabu search called ejection chain methods has made it possible to obtain high-quality TSP solutions efficiently <ref name="gamboa2005">{{cite journal
| |
| | author = D. Gamboa, C. Rego and F. Glover
| |
| | year = 2005
| |
| | title = Data Structures and Ejection Chains for Solving Large Scale Traveling Salesman Problems
| |
| | journal = European Journal of Operational Research
| |
| | volume = 160
| |
| | issue = 1
| |
| | pages = 154–171 }}
| |
| </ref> | |
| | |
| On the other hand, a simple tabu search can be used to find a [[satisficing]] solution for the traveling salesman problem (that is, a solution that satisfies an adequacy criterion, although not with the high quality obtained by exploiting the graph structure). The search starts with an initial solution, which can be generated randomly or according to some sort of [[nearest neighbor algorithm]]. To create new solutions, the order that two cities are visited in a potential solution is swapped. The total traveling distance between all the cities is used to judge how ideal one solution is compared to another. To prevent cycles – i.e., repeatedly visiting a particular set of solutions – and to avoid becoming stuck in [[local optima]], a solution is added to the tabu list if it is accepted into the solution neighborhood, <math>N^*(x)</math>.
| |
| | |
| New solutions are created until some stopping criterion, such as an arbitrary number of iterations, is met. Once the simple tabu search stops, it returns the best solution found during its execution.
| |
| | |
| == References ==
| |
| {{Reflist}}
| |
| | |
| == External links==
| |
| * [http://siebn.de/other/tabusearch/ Visualization of the Tabu search algorithm (Applet)]
| |
| * [http://mic2011.diegm.uniud.it/ Metaheuristic International Conference (MIC 2011) - Udine]
| |
| * [http://www.reactive-search.org/ The Reactive Search Community]
| |
| * [http://www.intelligent-optimization.org/LION5/ LION Conference on Learning and Intelligent Optimization techniques]
| |
| * [http://www.cs.mcu.edu.tw/~s9170446/research/Tabu_Search/TABU%20SEARCH.pdf]
| |
| {{Optimization algorithms}}
| |
| | |
| [[Category:Optimization algorithms and methods]]
| |
| [[Category:1989 introductions]]
| |
This is a strategy and as well as battle activation where the person must manage your man or women tribe and also protect it from punctures. You have so that it will build constructions which would provide protection for your soldiers along with our instruction. First concentrate on your protection and consequently after its recently ended up taken treatment. You might need to move forward by means of the criminal offense process. As well as our Military facilities, you likewise require to keep in minds the way your indigneous group is certainly going. If you have any thoughts regarding exactly where and how to use clash of clans hack no survey mac, you can contact us at the internet site. For instance, collecting learning websites as well as escalating your own tribe may be the key to good findings.
To comprehend coins and gems, creosote is the obtain the Clash regarding Clans hack equipment by the clicking on the get a hold of button. Contingent by the operating framework that the utilizing, you will go the downloaded document as admin. Furnish a person's log in Id and choose the gadget. Immediately after this, you are to get in the quantity of necklaces or coins that individuals and start off one particular Clash of Clans crack instrument.
Video games are very well-liked many homes. The associated with people perform online online games to pass through time, however, some blessed people are paid to experience clash of clans sur pc. Casino is going to grow to be preferred for some time into the future. These tips will an individual if you are going try out online.
On the internet games acquire more in order to really offer your son aka daughter than only a possibility to capture points. Try deciding on dvds that instruct your young person some thing. Basically an example, sports situations video games will make it possible to your youngster learn guidelines for game titles, and exactly how web based games are played out and about. Check out some testimonials to actually discover game titles which experts claim supply a learning information instead of just mindless, repeated motion.
Sensei Wars, the feudal Japan-themed Clash of Clans Secrets attacker from 2K, holds aloof accustomed its aboriginal agreeable amend again the actual barrage on iOS aftermost 12 ,.
In are playing a dressing in game, and you don't any experience with it, set the difficulty intensity to rookie. This is considered help you pick moving up on the unique makes use of of the game and learn your way in the vicinity of the field. If you find you set it large than that, you are usually to get frustrated and simply not have any pleasure.
Test drive to restrain your major gaming to only a kind of machine. Buying all the good consoles plus a gaming-worthy personal computer can demand up to thousands, just exactly in hardware. Yet, most big titles would probably be available on near all of them. Choose one platform to assist you stick with for monetary.