Geometric phase: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
en>Brent Perreault
en>Larsobrien
removed a section on the The Geometric Phase and the Big Bang as the external link is no longer valid
 
Line 1: Line 1:
{{Infobox integer sequence
They call me Ned and therefore i think this might quite good when you say this kind of. To keep bees is mysterious cure he loves most. Since she was 18 she's been working as being a production and planning officer but soon her husband and her will start their own company. My family lives in Nebraska. Go to her website to learn more: http://raleighx6.blog.com/2014/06/16/la-fibra-de-vidrio-un-componente-util-con-formidable-capacidad-para-el-reciclaje/<br><br>Feel free to visit my web site [http://raleighx6.blog.com/2014/06/16/la-fibra-de-vidrio-un-componente-util-con-formidable-capacidad-para-el-reciclaje/ resina epoxi]
| named_after          = [[John Wilson (Mathematician)|John Wilson]]
| publication_year      = 1938<ref>{{Cite journal | doi = 10.2307/1968791 | last = Lehmer | first = E. | authorlink = Emma Lehmer | title = On congruences involving Bernoulli numbers and the quotients of Fermat and Wilson | journal = Annals of Mathematics | volume = 39 | issue = 2 | pages = 350–360 | date = April 1938 | url = http://gradelle.educanet2.ch/christian.aebi/.ws_gen/14/Emma_Lehmer_1938.pdf | accessdate = 8 March 2011}}</ref>
| author                = [[Emma Lehmer]]
| terms_number          = 3
| first_terms          = [[5 (number)|5]], [[13 (number)|13]], [[563 (number)|563]]
| largest_known_term    = [[563 (number)|563]]
| OEIS                  = A007540
}}
A '''Wilson prime''', named after [[English people|English]] mathematician [[John Wilson (mathematician)|John Wilson]], is a [[prime number]] ''p'' such that ''p''<sup>2</sup> divides (''p''&nbsp;&minus;&nbsp;1)!&nbsp;+&nbsp;1, where "!" denotes the [[factorial function]]; compare this with [[Wilson's theorem]], which states that every prime ''p'' divides (''p''&nbsp;&minus;&nbsp;1)!&nbsp;+&nbsp;1.
 
The only known Wilson primes are [[5 (number)|5]], [[13 (number)|13]], and 563 {{OEIS|id=A007540}}; if any others exist, they must be greater than 2{{e|13}}.<ref name="Search">[http://arxiv.org/pdf/1209.3436v2.pdf A Search for Wilson primes] Retrieved on November 2, 2012.</ref> It has been [[conjecture]]d that infinitely many Wilson primes exist, and that the number of Wilson primes in an interval [''x'',&nbsp;''y''] is about log(log(''y'')/log(''x'')).<ref>[http://primes.utm.edu/glossary/page.php?sort=WilsonPrime The Prime Glossary: Wilson prime]</ref>
 
Several computer searches have been done in the hope of finding new Wilson primes.<ref>{{Cite web | last = McIntosh | first = R. | authorlink = Richard McIntosh | title = WILSON STATUS (Feb. 1999) | work = E-Mail to Paul Zimmermann | date = 9 March 2004 | url = http://www.loria.fr/~zimmerma/records/Wieferich.status | accessdate = 6 June 2011}}</ref><ref>''A search for Wieferich and Wilson primes'', p 443</ref><ref>{{Cite book | last = Ribenboim | first = P. | authorlink = Paulo Ribenboim | coauthors = Keller, W. | title = Die Welt der Primzahlen: Geheimnisse und Rekorde | publisher = Springer | date = 2006 | location = Berlin Heidelberg New York | page = 241 | language = German | url = http://books.google.de/books?id=-nEM9ZVr4CsC&pg=PA248&dq=die+welt+der+primzahlen+rodenkirch&hl=de&ei=LbLsTfG8G8XdsgamnLXnCg&sa=X&oi=book_result&ct=result&resnum=1&ved=0CDQQ6AEwAA#v=onepage&q&f=false | isbn = 3-540-34283-4}}</ref>
The [[Ibercivis]] [[distributed computing]] project includes a search for Wilson primes.<ref>[http://www.ibercivis.net/index.php?module=public&section=channels&action=view&id_channel=2&id_subchannel=138 Ibercivis site]</ref> Another search is coordinated at the mersenneforum.<ref>[http://www.mersenneforum.org/showthread.php?t=16028 Distributed search for Wilson primes] (at mersenneforum.org)</ref>
 
==Generalizations==
===Near-Wilson primes===
A prime p satisfying the congruence (p&nbsp;&minus;&nbsp;1)! ≡&nbsp;&minus;&nbsp;1&nbsp;+&nbsp;''Bp''&nbsp;(mod&nbsp;''p''<sup>2</sup>) with small |''B''| can be called a '''near-Wilson prime'''. Near-Wilson primes with ''B''&nbsp;=&nbsp;0 represent Wilson primes. The following table lists all such primes with |''B''|&nbsp;≤&nbsp;100 from 10<sup>6</sup> up to 4{{e|11}}:<ref name="Search"/>
 
{| class="wikitable collapsible collapsed" style="width:30%;border:0px;text-align:right;"
|-
! p !! B
|-
| 1282279 || +20
|-
| 1306817 || −30
|-
| 1308491 || −55
|-
| 1433813 || −32
|-
| 1638347 || −45
|-
| 1640147 || −88
|-
| 1647931 || +14
|-
| 1666403 || +99
|-
| 1750901 || +34
|-
| 1851953 || −50
|-
| 2031053 || −18
|-
| 2278343 || +21
|-
| 2313083 || +15
|-
| 2695933 || −73
|-
| 3640753 || +69
|-
| 3677071 || −32
|-
| 3764437 || −99
|-
| 3958621 || +75
|-
| 5062469 || +39
|-
| 5063803 || +40
|-
| 6331519 || +91
|-
| 6706067 || +45
|-
| 7392257 || +40
|-
| 8315831 || +3
|-
| 8871167 || −85
|-
| 9278443 || −75
|-
| 9615329 || +27
|-
| 9756727 || +23
|-
| 10746881 || −7
|-
| 11465149 || −62
|-
| 11512541 || −26
|-
| 11892977 || −7
|-
| 12632117 || −27
|-
| 12893203 || −53
|-
| 14296621 || +2
|-
| 16711069 || +95
|-
| 16738091 || +58
|-
| 17879887 || +63
|-
| 19344553 || −93
|-
| 19365641 || +75
|-
| 20951477 || +25
|-
| 20972977 || +58
|-
| 21561013 || −90
|-
| 23818681 || +23
|-
| 27783521 || −51
|-
| 27812887 || +21
|-
| 29085907 || +9
|-
| 29327513 || +13
|-
| 30959321 || +24
|-
| 33187157 || +60
|-
| 33968041 || +12
|-
| 39198017 || −7
|-
| 45920923 || −63
|-
| 51802061 || +4
|-
| 53188379 || −54
|-
| 56151923 || −1
|-
| 57526411 || −66
|-
| 64197799 || +13
|-
| 72818227 || −27
|-
| 87467099 || −2
|-
| 91926437 || −32
|-
| 92191909 || +94
|-
| 93445061 || −30
|-
| 93559087 || −3
|-
| 94510219 || −69
|-
| 101710369 || −70
|-
| 111310567 || +22
|-
| 117385529 || −43
|-
| 176779259 || +56
|-
| 212911781 || −92
|-
| 216331463 || −36
|-
| 253512533 || +25
|-
| 282361201 || +24
|-
| 327357841 || −62
|-
| 411237857 || −84
|-
| 479163953 || −50
|-
| 757362197 || −28
|-
| 824846833 || +60
|-
| 866006431 || −81
|-
| 1227886151 || −51
|-
| 1527857939 || −19
|-
| 1636804231 || +64
|-
| 1686290297 || +18
|-
| 1767839071 || +8
|-
| 1913042311 || −65
|-
| 1987272877 || +5
|-
| 2100839597 || −34
|-
| 2312420701 || −78
|-
| 2476913683 || +94
|-
| 3542985241 || −74
|-
| 4036677373 || −5
|-
| 4271431471 || +83
|-
| 4296847931 || +41
|-
| 5087988391 || +51
|-
| 5127702389 || +50
|-
| 7973760941 || +76
|-
| 9965682053 || −18
|-
| 10242692519 || −97
|-
| 11355061259 || −45
|-
| 11774118061 || −1
|-
| 12896325149 || +86
|-
| 13286279999 || +52
|-
| 20042556601 || +27
|-
| 21950810731 || +93
|-
| 23607097193 || +97
|-
| 24664241321 || +46
|-
| 28737804211 || −58
|-
| 35525054743 || +26
|-
| 41659815553 || +55
|-
| 42647052491 || +10
|-
| 44034466379 || +39
|-
| 60373446719 || −48
|-
| 64643245189 || −21
|-
| 66966581777 || +91
|-
| 67133912011 || +9
|-
| 80248324571 || +46
|-
| 80908082573 || −20
|-
| 100660783343 || +87
|-
| 112825721339 || +70
|-
| 231939720421 || +41
|-
| 258818504023 || +4
|-
| 260584487287 || −52
|-
| 265784418461 || −78
|-
| 298114694431 || +82
|-
|}
 
===Wilson numbers===
A ''Wilson number'' is an integer ''m'' such that ''W''(''m'') ≡ 0 (mod ''m''), where ''W''(''m'') denotes the [[Wilson quotient]] (ie. <math>\tfrac{(m-1)!+1}{m}</math>) {{OEIS|id=A157250}}. If ''m'' is prime, then ''m'' is a Wilson prime. There are 12 Wilson numbers up to 5{{e|8}}.<ref>{{cite journal | doi=10.1090/S0025-5718-98-00951-X | author=Takashi Agoh | coauthors=Karl Dilcher, Ladislav Skula | title=Wilson quotients for composite moduli | journal=Math. Comput. | volume=67 | issue=222 | pages=843–861 | year=1998 | url=http://www.ams.org/journals/mcom/1998-67-222/S0025-5718-98-00951-X/S0025-5718-98-00951-X.pdf}}</ref>
 
== See also ==
* [[Wieferich prime]]
* [[Wall–Sun–Sun prime]]
* [[Wolstenholme prime]]
*[[PrimeGrid]]
* [[Table of congruences]]
 
==Notes==
<references/>
 
==References==
* {{cite journal | author=N. G. W. H. Beeger | title=Quelques remarques sur les congruences ''r''<sup>''p''−1</sup> ≡&nbsp;1 (mod&nbsp;''p''<sup>2</sup>) et (''p''&nbsp;−&nbsp;1!)&nbsp;≡&nbsp;−1 (mod p<sup>2</sup>) | journal=[[Messenger of Mathematics|The Messenger of Mathematics]] | volume=43 | pages=72–84 | year=1913–1914}}
* {{cite journal | author=Karl Goldberg | title=A table of Wilson quotients and the third Wilson prime | journal=[[J. London Math. Soc.]]| volume=28 | issue=2 | pages=252–256 | year=1953 | doi=10.1112/jlms/s1-28.2.252 }}
* {{cite book | title=The new book of prime number records | author=Paulo Ribenboim | authorlink=Paulo Ribenboim | publisher=[[Springer-Verlag]] | year=1996 | isbn=0-387-94457-5 | pages=346 }}
* {{cite journal | author=Richard E. Crandall | coauthors=Karl Dilcher, Carl Pomerance | title=A search for Wieferich and Wilson primes | journal=Math. Comput. | volume=66 | issue=217 | pages=433–449 | year=1997 | doi=10.1090/S0025-5718-97-00791-6 }}
* {{cite book | title=Prime Numbers: A Computational Perspective | author=Richard E. Crandall | coauthors=Carl Pomerance | publisher=Springer-Verlag | year=2001 | page=29 | isbn=0-387-94777-9 }}
* {{cite journal | author=Erna H. Pearson | title=On the Congruences (''p''&nbsp;−&nbsp;1)! ≡&nbsp;−1 and 2<sup>''p''−1</sup>&nbsp;≡&nbsp;1&nbsp;(mod&nbsp;''p''<sup>2</sup>) | journal=Math. Comput. | volume=17 | pages=194–195 | year=1963 | url=http://www.ams.org/journals/mcom/1963-17-082/S0025-5718-1963-0159780-0/S0025-5718-1963-0159780-0.pdf}}
 
== External links ==
* [http://primes.utm.edu/glossary/page.php?sort=WilsonPrime The Prime Glossary: Wilson prime]
* {{MathWorld|urlname=WilsonPrime|title=Wilson prime}}
* [http://www.loria.fr/~zimmerma/records/Wieferich.status Status of the search for Wilson primes]
* [http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.102.6544&rep=rep1&type=pdf Wilson Quotients for composite moduli]
* [http://gradelle.educanet2.ch/christian.aebi/.ws_gen/14/Emma_Lehmer_1938.pdf On congruences involving Bernoulli numbers and the quotients of Fermat and Wilson]
 
{{Prime number classes|state=collapsed}}
 
[[Category:Classes of prime numbers]]
[[Category:Factorial and binomial topics]]

Latest revision as of 11:34, 12 December 2014

They call me Ned and therefore i think this might quite good when you say this kind of. To keep bees is mysterious cure he loves most. Since she was 18 she's been working as being a production and planning officer but soon her husband and her will start their own company. My family lives in Nebraska. Go to her website to learn more: http://raleighx6.blog.com/2014/06/16/la-fibra-de-vidrio-un-componente-util-con-formidable-capacidad-para-el-reciclaje/

Feel free to visit my web site resina epoxi