List of OEIS sequences: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
en>BenTels
Undid revision 507851582 by BenTels (talk)
 
en>Vi2
Add A031214, as referring to OEIS itself.
Line 1: Line 1:
We're trying to mask the noise by running an air filter, but we don't want to have to have the air filter on all the time.<br>So he tried a different outlet. So I closed the drapes and turned on a lamp in search of another outlet.<br>http://www.hamiltonorchards. If you have any sort of inquiries relating to where and how you can make use of [http://www.bendtrapclub.com/cheap/ugg.asp Cheap Uggs Boots], you can call us at the web-site. com/kors/?p=139 <br /> http://www.hamiltonorchards.com/kors/?p=136 <br /> http://www.hamiltonorchards.com/kors/?p=85 <br /> http://www.hamiltonorchards.com/kors/?p=114 <br /> http://www.hamiltonorchards.com/kors/?p=116 <br />
{| class="navbox collapsible"
|-
!colspan="6" style="background:lightsteelblue;"|{{tnavbar-collapsible|Fundamental convex [[regular honeycomb|regular]] and [[uniform honeycomb]]s in dimensions 2–11 |Honeycombs}}
 
|- align=center
!class="navbox-group" style="background:gainsboro;"|[[Coxeter_group#Finite_Coxeter_groups|Family]]
|style="background:gainsboro;"|<math>{\tilde{A}}_{n-1}</math>
|style="background:gainsboro;"|<math>{\tilde{C}}_{n-1}</math>
|style="background:gainsboro;"|<math>{\tilde{B}}_{n-1}</math>
|style="background:gainsboro;"|<math>{\tilde{D}}_{n-1}</math>
|style="background:gainsboro;"|<math>{\tilde{G}}_2</math> / <math>{\tilde{F}}_4</math> / <math>{\tilde{E}}_{n-1}</math>
 
|- align=center
!class="navbox-group" style="background:gainsboro;"|[[Uniform tiling]]
|[[Triangular tiling|{3<sup>[3]</sup>}]]
|[[Square tiling|<big>&delta;<sub>3</sub></big>]]
|[[Square tiling|<big>h&delta;<sub>3</sub></big>]]
|[[Square tiling|<big>q&delta;<sub>3</sub></big>]]
|style="background:#e0e0f0;"| [[Hexagonal tiling|Hexagonal]]
|- align=center
!class="navbox-group" style="background:gainsboro;" |[[Uniform convex honeycomb]]
|style="background:whitesmoke;"|[[Tetrahedral-octahedral honeycomb|{3<sup>[4]</sup>}]]
|style="background:whitesmoke;"|[[Cubic honeycomb|<big>&delta;<sub>4</sub></big>]]
|style="background:whitesmoke;"|[[Tetrahedral-octahedral honeycomb|<big>h&delta;<sub>4</sub></big>]]
|style="background:whitesmoke:"|[[Quarter cubic honeycomb|<big>q&delta;<sub>4</sub></big>]]
|style="background:whitesmoke;"|
 
|- align=center
!class="navbox-group" style="background:gainsboro;"|[[Uniform 5-honeycomb]]
|[[5-cell honeycomb|{3<sup>[5]</sup>}]]
|[[Tesseractic honeycomb|<big>&delta;<sub>5</sub></big>]]
|[[16-cell honeycomb|<big>h&delta;<sub>5</sub></big>]]
|[[quarter tesseractic honeycomb|<big>q&delta;<sub>5</sub></big>]]
|style="background:#e0f0e0;"| [[24-cell honeycomb]]
 
|- align=center
!class="navbox-group" style="background:gainsboro;"|[[Uniform 6-honeycomb]]
|style="background:whitesmoke;"|[[5-simplex honeycomb|{3<sup>[6]</sup>}]]
|style="background:whitesmoke;"|[[5-cubic honeycomb|<big>&delta;<sub>6</sub></big>]]
|style="background:whitesmoke;"|[[5-demicubic honeycomb|<big>h&delta;<sub>6</sub></big>]]
|style="background:whitesmoke;"|[[quarter 5-cubic honeycomb|<big>q&delta;<sub>6</sub></big>]]
|style="background:whitesmoke;"|
 
|- align=center
!class="navbox-group" style="background:gainsboro;"|[[Uniform 7-honeycomb]]
|[[6-simplex honeycomb|{3<sup>[7]</sup>}]]
|[[6-cubic honeycomb|<big>&delta;<sub>7</sub></big>]]
|[[6-demicubic honeycomb|<big>h&delta;<sub>7</sub></big>]]
|[[quarter 6-cubic honeycomb|<big>q&delta;<sub>7</sub></big>]]
|style="background:#f0e0e0;"| [[2_22 honeycomb|2<sub>22</sub>]]
 
|- align=center
!class="navbox-group" style="background:gainsboro;"|[[Uniform 8-honeycomb]]
|style="background:whitesmoke;"|[[7-simplex honeycomb|{3<sup>[8]</sup>}]]
|style="background:whitesmoke;"|[[7-cubic honeycomb|<big>&delta;<sub>8</sub></big>]]
|style="background:whitesmoke;"|[[7-demicubic honeycomb|<big>h&delta;<sub>8</sub></big>]]
|style="background:whitesmoke;"|[[quarter 7-cubic honeycomb|<big>q&delta;<sub>8</sub></big>]]
|style="background:#f0e0e0;"| [[1_33 honeycomb|1<sub>33</sub>]] • [[3_31 honeycomb|3<sub>31</sub>]]
 
|- align=center
!class="navbox-group" style="background:gainsboro;"|[[Uniform 9-honeycomb]]
|[[8-simplex honeycomb|{3<sup>[9]</sup>}]]
|[[8-cubic honeycomb|<big>&delta;<sub>9</sub></big>]]
|[[8-demicubic honeycomb|<big>h&delta;<sub>9</sub></big>]]
|[[quarter 8-cubic honeycomb|<big>q&delta;<sub>9</sub></big>]]
|style="background:#f0e0e0;"| [[1_52 honeycomb|1<sub>52</sub>]] • [[2_51 honeycomb|2<sub>51</sub>]] • [[5_21 honeycomb|5<sub>21</sub>]]
 
|- align=center
!class="navbox-group" style="background:gainsboro;"|Uniform ''n''-[[Honeycomb (geometry)|honeycomb]]
|style="background:whitesmoke;"|[[simplectic honeycomb|{3<sup>[n]</sup>}]]
|style="background:whitesmoke;"|[[hypercubic honeycomb|<big>&delta;<sub>n</sub></big>]]
|style="background:whitesmoke;"|[[demicubic honeycomb|<big>h&delta;<sub>n</sub></big>]]
|style="background:whitesmoke;"|[[quarter hypercubic honeycomb|<big>q&delta;<sub>n</sub></big>]]
|style="background:#f0e0e0;"|[[Uniform 1 k2 polytope|1<sub>k2</sub>]] • [[Uniform 2 k1 polytope|2<sub>k1</sub>]] • [[Uniform k 21 polytope|k<sub>21</sub>]]
|}<noinclude>[[Category:Polytopes]]
[[Category:Mathematics templates|{{PAGENAME}}]]</noinclude>

Revision as of 15:02, 11 January 2014