Transshipment problem: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
en>Mild Bill Hiccup
 
en>KLBot2
m Bot: Migrating 1 interwiki links, now provided by Wikidata on d:Q2478461
Line 1: Line 1:
== Fred Perry Polo Outlet  ist es sehr wahrscheinlich ==
In the mathematical fields of [[numerical analysis]] and [[approximation theory]], '''box splines''' are [[piecewise]] [[polynomial]] [[Function (mathematics)|functions]] of several variables.<ref name="thebook">C. de Boor, K. Höllig, and S. Riemenschneider. Box Splines, volume 98 of Applied Mathematical Sciences. Springer-Verlag, New York, 1993.</ref> Box splines are considered as a multivariate generalization of [[B-spline|basis splines (B-splines)]] and are generally used for multivariate approximation/interpolation. Geometrically, a box spline is the shadow (X-ray) of a hypercube projected down to a lower dimensional space.<ref>{{Cite doi| 10.1007/978-3-662-04919-8_17|noedit}}</ref> Box splines and simplex splines are well studied special cases of polyhedral splines which are defined as shadows of general [[polytopes]].


Die folgenden drei Hauptindikatoren, die in der häuslichen Pflege erforderlich ist: Gedächtnis und kognitive Probleme beeinflussen das tägliche Leben Wir alle vergessen, die Dinge von Zeit zu Zeit, und wie wir altern diese Ereignisse zu erhöhen. Folglich Sterblichkeit aufgrund der sehr Frühgeburten pro 1000 Geburten insgesamt fast doppelt so in den am stärksten benachteiligten Gebiete hoch, verglichen mit dem am wenigsten benachteiligten (Inzidenzrate Verhältnis 1,94, 95% Konfidenzintervall 1,62-2,32).<br><br>Früher war es so, dass Menschen, nahm ein paar Dutzend Fotos von einem Jahr. Heute werde ich Ihnen mehr erzählen über [http://www.studerkunststoffe.ch/script/style.asp?p=121-Fred-Perry-Polo-Outlet Fred Perry Polo Outlet] die Website habe ich über bekannt vor, aber ich didn tatsächlich zahlen keine Aufmerksamkeit auf sie. Aus dieser Perspektive, Organisation (und Organisationskultur) kommt durch organisatorische Prozesse, durch Beziehungsmuster gebaut und bedeutet, einen Weg von 45 life.44 Unsere Aufgabe war es zu erleben, wie Organisation wurde von Tag zu Tag [http://www.ferotech.ch/highslide/graphics/outlines/define.asp?r=102-Ray-Ban-Store-Zürich Ray Ban Store Zürich] erreicht ..<br><br>Nur zur Info, besaß ich die 5870, 6970 und 7970, die alle auf. Gehen auf einem Laufband bietet viele der gesundheitlichen Vorteile des Laufens, wenn bei moderater Intensität und für eine ausreichend lange Zeit durchgeführt. (Fast ein Drittel der amerikanischen Arbeiter ist ein unabhängiger Vertragspartner, nach dem Freelancer-Union.) Unternehmen, Arbeitnehmer einzustellen Kontingent oft getrieben, um so zu tun durch Spitzen der Arbeitsbelastung und der Wunsch, 'Probefahrt' Mitarbeiter, bevor sie eine Dauerangebot.<br><br>Sie weist darauf hin, dass Nevada hat eine der höchsten Raten der sexuellen Gewalt in den USA, mit [http://www.mcaviglia.ch/test/pageflip/test/session.asp?a=11-Nike-Air-Max-Schuhe Nike Air Max Schuhe] 42 Vergewaltigungen pro 100.000 Einwohner im Jahr 2007 im Vergleich mit einer US-weiten Durchschnitt von 30, und schlägt vor, dass die Flut der öffentlichen Meinung dreht .. In Level 1, ein Turner doesn tatsächlich die Sprungtisch.<br><br>Eine Sache, wir sind sicher, dass sie nicht brauchen, ist eine große Gadget in der [http://www.leu-ruesi.ch/pages/inc/Guest.asp?n=12-Nike-Blazer-Mid Nike Blazer Mid] Tasche .. Wenn er will, um ein gutes Ergebnis zu bekommen, muss er mehr laufen. Grün, wurde vor kurzem aus dem Militär entlassen und hat auf nicht schuldig zu Vergewaltigung und Mordes vor einem Bundesgericht in Kentucky plädiert.<br><br>Wenn jemand auf einer gestrandet, ist es sehr wahrscheinlich, dass es anderen Inseln in ein paar Meilen in ein paar hundert Meter, wenn nicht. Ich war irritiert, er fuhr so ​​langsam, so wie ich ging von seinem Auto, das ich griff nach oben und klopfte an die Fahrertür. Wenn ein Anruf eingeht, wird die Musik automatisch unterbrochen und ein Klingelmelodie beginnt, sich in den Kopfhörern zu spielen.<ul>
==Definition==
 
A box spline is a multivariate [[Function (mathematics)|function]] (<math>\mathbb{R}^d \to \mathbb{R} </math>) defined for a set of vectors, <math>\xi \in \mathbb{R}^d</math>, usually gathered in a matrix <math>\mathbf{\Xi} := \left[\xi_1 \dots \xi_N\right] </math>.
  <li>[http://verdamilio.net/tonio/spip.php?article1/ http://verdamilio.net/tonio/spip.php?article1/]</li>
 
 
When the number of vectors is the same as the dimension of the domain (i.e., <math> N = d </math>) then the box spline is simply the (normalized) [[indicator function]] of the parallelepiped formed by the vectors in <math>\mathbf{\Xi}</math>:
  <li>[http://www.general.assembly.codesria.org/spip.php?article87&lang=fr/ http://www.general.assembly.codesria.org/spip.php?article87&lang=fr/]</li>
:<math> M_{\mathbf{\Xi}}(\mathbf{x}) := \frac{1}{\mid{\det{\Xi}}\mid}\chi_{\mathbf{\Xi}}(\mathbf{x}) = \begin{cases} \frac{1}{\mid{\det{\Xi}}\mid} & \mathbf{x} = \sum_{n=1}^d{t_n \xi_n} \text{ for some } 0 \le t_n < 1 \\ 0 & \text{otherwise}\end{cases}.</math>
 
Adding a new direction, <math>\xi</math>, to <math>\mathbf{\Xi}</math>, or generally when <math>N > d</math>, the box spline is defined recursively:<ref name="thebook" />
  <li>[http://www.jvbbs.com/forum.php?mod=viewthread&tid=1433144 http://www.jvbbs.com/forum.php?mod=viewthread&tid=1433144]</li>
:<math> M_{\mathbf{\Xi} \cup \xi}(\mathbf{x}) = \int_0^1{M_{\mathbf{\Xi}}(\mathbf{x}- t \xi) \, {\rm d}t}</math>.
 
 
  <li>[http://forum.rider74.ru/viewtopic.php?f=16&t=1107867 http://forum.rider74.ru/viewtopic.php?f=16&t=1107867]</li>
[[File:Box Splines Square Grid Annotated Dark.png|thumb|right|Examples of bivariate box splines corresponding to 1, 2, 3 and 4 vectors in 2-D.]]
 
 
  <li>[http://ks35439.kimsufi.com/spip.php?article450/ http://ks35439.kimsufi.com/spip.php?article450/]</li>
The box spline <math>M_{\mathbf{\Xi}}</math> can be interpreted as the shadow of the [[indicator function]] of the unit [[hypercube]] in <math>\mathbb{R}^N</math> when projected down into <math>\mathbb{R}^d</math>. In this view, the vectors <math>\xi \in \mathbf{\Xi}</math> are the geometric projection of the [[standard basis]] in <math>\mathbb{R}^N</math> (i.e., the edges of the hypercube) to <math>\mathbb{R}^d</math>.
 
 
</ul>
Considering [[tempered distributions]] a box spline associated with a single direction vector is a [[Dirac delta function|Dirac]]-like [[generalized function]] supported on <math>t\xi</math> for <math>0 \le t < 1</math>. Then the general box spline is defined as the convolution of distributions associated the single-vector box splines:<ref name="boxTomo">{{Cite doi| 10.1109/TMI.2012.2191417|noedit}}</ref>
:<math>M_{\mathbf{\Xi}} = M_{\xi_1} \ast M_{\xi_2} \dots \ast M_{\xi_N}. </math>
 
==Properties==
* Let <math>\kappa</math> be the minimum number of directions whose removal from <math>\Xi</math> makes the remaining directions ''not'' span <math>\mathbb{R}^d</math>. Then the box spline has <math>\kappa-2</math> degrees of continuity: <math>M_{\mathbf{\Xi}} \in C^{\kappa-2}(\mathbb{R}^d)</math>.<ref name="thebook" />
 
* When <math>N\ge d</math> (and vectors in <math>\Xi</math> span <math>\mathbb{R}^d</math>) the box spline is a compactly supported function whose support is a [[Zonohedron|zonotope]] in <math>\mathbb{R}^d</math> formed by the [[Minkowski sum]] of the direction vectors <math>{\xi} \in \mathbf{\Xi}</math>.
 
* Since [[Zonohedron|zonotopes]] are centrally symmetric, the support of the box spline is symmetric with respect to its center: <math>\mathbf{c}_\Xi := \frac{1}{2}\sum_{n=1}^N \xi_n .</math>
 
* [[Fourier transform]] of the box spline, in <math>d</math> dimensions, is given by
:: <math>\hat{M}_{\Xi}(\omega) = \exp{(-j\mathbf{c}_{\Xi}\cdot\omega)}\prod_{n=1}^N{{\rm sinc}(\xi_n\cdot\omega)}.</math>
 
==Applications==
Box splines have been useful in characterization of hyperplane arrangements.<ref name="boxHyperplane">De Concini, Corrado, and Claudio Procesi. Topics in hyperplane arrangements, polytopes and box-splines. Springer, 2011.</ref> Also, box splines can be
used to compute the volume of polytopes.<ref name="boxpolytope"> Zhiqiang Xu, Multivariate splines and polytopes, Journal of Approximation Theory, Vol. 163, Issue 3, March 2011.</ref>
 
In the context of [[Multidimensional sampling|multidimensional signal processing]], box splines provide a flexible framework for designing (non-separable) basis functions acting as [[Reconstruction filter|multivariate interpolation kernels]] (reconstruction filters) geometrically tailored to non-Cartesian [[Multidimensional sampling|sampling lattices]]. This flexibility makes box splines suitable for designing (non-separble) interpolation filters for [[Cubic crystal system|crystallographic lattices]] which are optimal<ref name="optSamp">{{Cite doi|10.1109/TIT.2004.840864|noedit}}</ref> from the information-theoretic aspects for [[Multidimensional sampling|sampling]] multidimensional functions. Optimal sampling lattices have been studied in higher dimensions.<ref name="optSamp" /> Generally, optimal [[sphere packing]] and sphere covering lattices<ref>J. H. Conway, N. J. A. Sloane. Sphere packings, lattices and groups. Springer, 1999.</ref> are useful for sampling multivariate functions in 2-D, 3-D and higher dimensions.
 
For example, in the 2-D setting the three-direction box spline<ref>{{Cite doi| 10.1109/LSP.2006.871852|noedit}}</ref> is used for interpolation of hexagonally sampled images. In the 3-D setting, four-direction<ref name="fourDir">{{Cite doi| 10.1109/TVCG.2007.70429|noedit}}</ref> and six-direction<ref name="sixDir">{{Cite doi| 10.1109/TVCG.2008.115|noedit}}</ref> box splines are used for interpolation of data sampled on the (optimal) [[body centered cubic]] and [[face centered cubic]] lattices respectively.<ref>Entezari, Alireza. Optimal sampling lattices and trivariate box splines. [Vancouver, BC.]: Simon Fraser University, 2007. <http://summit.sfu.ca/item/8178>.</ref> The seven-direction box spline can be used for interpolation of data on the Cartesian lattice<ref>{{Cite doi| 10.1109/TVCG.2006.141|noedit}}</ref> as well as the [[body centered cubic]] lattice.<ref>{{Cite doi| 10.1109/TVCG.2012.130|noedit}}</ref> Generalization of the four-<ref name="fourDir" /> and six-direction<ref name="sixDir" /> box splines to higher dimensions<ref>Kim, Minho. Symmetric Box-Splines on Root Lattices. [Gainesville, Fla.]: University of Florida, 2008. <http://uf.catalog.fcla.edu/permalink.jsp?20UF021643670>.</ref> can be used to build splines on [[Root system|root lattices]]. Box splines are key ingredients of hex-splines<ref>{{Cite doi| 10.1109/TIP.2004.827231}}</ref> and Voronoi splines.<ref>{{Cite doi| 10.1109/TSP.2010.2051808|noedit}}</ref>
 
They have found applications in high-dimensional filtering, specifically for fast bilateral filtering and non-local means algorithms.<ref>{{Cite doi|10.1007/s10851-012-0379-2 |noedit}}</ref> Moreover, box splines are used for designing efficient space-variant (i.e., non-convolutional) filters.<ref>{{Cite doi| 10.1109/TIP.2010.2046953|noedit}}</ref>
 
Box splines are useful basis functions for image representation in the context of [[tomographic reconstruction]] problems as the box spline (function) spaces are closed under [[X-ray transform|X-ray]] and [[Radon transform|Radon]] transforms.<ref name="boxTomo" /><ref>{{Cite doi| 10.1109/ISBI.2010.5490105}}</ref>
 
==References==
{{reflist}}
 
[[Category:Splines]]

Revision as of 18:06, 25 April 2013

In the mathematical fields of numerical analysis and approximation theory, box splines are piecewise polynomial functions of several variables.[1] Box splines are considered as a multivariate generalization of basis splines (B-splines) and are generally used for multivariate approximation/interpolation. Geometrically, a box spline is the shadow (X-ray) of a hypercube projected down to a lower dimensional space.[2] Box splines and simplex splines are well studied special cases of polyhedral splines which are defined as shadows of general polytopes.

Definition

A box spline is a multivariate function () defined for a set of vectors, , usually gathered in a matrix .

When the number of vectors is the same as the dimension of the domain (i.e., ) then the box spline is simply the (normalized) indicator function of the parallelepiped formed by the vectors in :

Adding a new direction, , to , or generally when , the box spline is defined recursively:[1]

.
Examples of bivariate box splines corresponding to 1, 2, 3 and 4 vectors in 2-D.

The box spline can be interpreted as the shadow of the indicator function of the unit hypercube in when projected down into . In this view, the vectors are the geometric projection of the standard basis in (i.e., the edges of the hypercube) to .

Considering tempered distributions a box spline associated with a single direction vector is a Dirac-like generalized function supported on for . Then the general box spline is defined as the convolution of distributions associated the single-vector box splines:[3]

Properties

Applications

Box splines have been useful in characterization of hyperplane arrangements.[4] Also, box splines can be used to compute the volume of polytopes.[5]

In the context of multidimensional signal processing, box splines provide a flexible framework for designing (non-separable) basis functions acting as multivariate interpolation kernels (reconstruction filters) geometrically tailored to non-Cartesian sampling lattices. This flexibility makes box splines suitable for designing (non-separble) interpolation filters for crystallographic lattices which are optimal[6] from the information-theoretic aspects for sampling multidimensional functions. Optimal sampling lattices have been studied in higher dimensions.[6] Generally, optimal sphere packing and sphere covering lattices[7] are useful for sampling multivariate functions in 2-D, 3-D and higher dimensions.

For example, in the 2-D setting the three-direction box spline[8] is used for interpolation of hexagonally sampled images. In the 3-D setting, four-direction[9] and six-direction[10] box splines are used for interpolation of data sampled on the (optimal) body centered cubic and face centered cubic lattices respectively.[11] The seven-direction box spline can be used for interpolation of data on the Cartesian lattice[12] as well as the body centered cubic lattice.[13] Generalization of the four-[9] and six-direction[10] box splines to higher dimensions[14] can be used to build splines on root lattices. Box splines are key ingredients of hex-splines[15] and Voronoi splines.[16]

They have found applications in high-dimensional filtering, specifically for fast bilateral filtering and non-local means algorithms.[17] Moreover, box splines are used for designing efficient space-variant (i.e., non-convolutional) filters.[18]

Box splines are useful basis functions for image representation in the context of tomographic reconstruction problems as the box spline (function) spaces are closed under X-ray and Radon transforms.[3][19]

References

43 year old Petroleum Engineer Harry from Deep River, usually spends time with hobbies and interests like renting movies, property developers in singapore new condominium and vehicle racing. Constantly enjoys going to destinations like Camino Real de Tierra Adentro.

  1. 1.0 1.1 1.2 C. de Boor, K. Höllig, and S. Riemenschneider. Box Splines, volume 98 of Applied Mathematical Sciences. Springer-Verlag, New York, 1993.
  2. Template:Cite doi
  3. 3.0 3.1 Template:Cite doi
  4. De Concini, Corrado, and Claudio Procesi. Topics in hyperplane arrangements, polytopes and box-splines. Springer, 2011.
  5. Zhiqiang Xu, Multivariate splines and polytopes, Journal of Approximation Theory, Vol. 163, Issue 3, March 2011.
  6. 6.0 6.1 Template:Cite doi
  7. J. H. Conway, N. J. A. Sloane. Sphere packings, lattices and groups. Springer, 1999.
  8. Template:Cite doi
  9. 9.0 9.1 Template:Cite doi
  10. 10.0 10.1 Template:Cite doi
  11. Entezari, Alireza. Optimal sampling lattices and trivariate box splines. [Vancouver, BC.]: Simon Fraser University, 2007. <http://summit.sfu.ca/item/8178>.
  12. Template:Cite doi
  13. Template:Cite doi
  14. Kim, Minho. Symmetric Box-Splines on Root Lattices. [Gainesville, Fla.]: University of Florida, 2008. <http://uf.catalog.fcla.edu/permalink.jsp?20UF021643670>.
  15. Template:Cite doi
  16. Template:Cite doi
  17. Template:Cite doi
  18. Template:Cite doi
  19. Template:Cite doi