Yang–Mills–Higgs equations: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
en>Bender235
 
en>Yobot
m →‎References: WP:CHECKWIKI error fixes / special characters in pagetitle using AWB (9485)
Line 1: Line 1:
They have powerful and durable mountain bikes with a high-tech suspension system. Normal pedaling motion disengages the brake cane, allowing for normal pedaling. These bikes are very popular with the sport of mountain biking. Alison Addy is the author of many articles on subjects like mountain bike crashes and published at. With this in mind all you have to do is book the vacation and find the right bike for you and your holiday. <br><br>The prices offered by these online stores are very competitive and realistic according to the market. If you liked this posting and you would like to acquire more info with regards to [http://www.wallpaperhdquality.com/profile/toliddell Transfering to mountain bike sizing.] kindly check out our own internet site. "Before breathing exercises it took me 45 minutes to really get into my stride when off road mountain biking. Fitting is logical, the instructions are clear few tools are required. - Get a bike that is lightweight and made out of carbon fiber materials. UST kits can also improve sturdiness of UST wheels with added sealing capacity in case of any punctures. <br><br>When the cable is pulled, the two arms are actuated and stopping power is applied to the rims. Here are some of the more popular mountain bike wheels now available [*CO]. Article Source:  has the best selection of lightweight folding bikes at great prices. Follow these simple tips and maximize your riding time while you wait for the snow to fall again. However, be careful that any loose ends (from straps or laces) and buckles don't have over, as they can pose a safety hazard if you elect to use toe clips. <br><br>There are still other types of bikes that require different types of tires. There are also tires with detailed treads which are very prominent and these are very useful for the biker because of the grip they provide. In the purest sense of the word, a mountain bikes sole mission is to travel "off-road" only. I should have had that Bicycle repair tool with me, becuase when I got home and lowered the seat. With  Adventure Kerala ( you will enjoy adventure sports like mountaineering, rapelling, rock climbing, river crossing, and a whole lot of adventure activities. <br><br>If you can afford it, a full suspension mountain bike is always worth the purchase. Why pollute the air when you can experience an electrical folding bike. I hope what you will have found in the article with respect to Mongoose mountain bike reviews, together with additionally the particular info  regarding mountain bikes, is going to be helpful for you. I've always been curious about this aspect of dating, because very few women have comparable experiences. Some switchbacks can be technically challenging and the narrow, winding trails can make for a few surprises when encountering other riders, but much of the system is gentle, rolling and easily managed by novices.
'''Carbonaceous biochemical oxygen demand''' or CBOD is a method defined test measured by the depletion of dissolved oxygen by biological organisms in a body of water in which the contribution from nitrogenous bacteria has been suppressed. CBOD is a method defined parameter is widely used as an indication of the pollutant removal from [[wastewater]]. It is listed as a conventional pollutant in the U.S. [[Clean Water Act]].
 
== The CBOD<sub>5</sub> test ==
 
The CBOD tests have the widest application in measuring waste loadings to treatment plants and in evaluating the CBOD-removal efficiency of such treatment systems. The test measures the molecular oxygen utilized during a specified incubation period for the biochemical degradation of organic material (carbonaceous demand) and the oxygen used to oxidize inorganic material such as sulfides and ferrous iron. It also may measure the amount of oxygen used to oxidize reduced forms of nitrogen (nitrogenous demand) unless their oxidation is prevented by an inhibitor. The seeding and dilution procedures provide an estimate of the CBOD at pH 6.5 to 7.5.
 
There are two recognized EPA methods for the measurement of CBOD:
*Standard Methods for the Examination of Water and Wastewater, Method 5210B<ref>Lenore S. Clesceri, Andrew D. Eaton, Eugene W. Rice (2005). Standard Methods for Examination of Water & Wastewater Method 5210B. Washington, DC: American Public Health Association, American Water Works Association, and the Water Environment Association. Also available by online subscription at http://www.standardmethods.org .</ref>
*In-Situ Inc. Method 1004-8-2009 Carbonaceous Biochemical Oxygen Demand (CBOD) Measurement by Optical Probe.<ref>In-Situ Inc. Method 1004-8-2009 Carbonaceous Biochemical Oxygen Demand (CBOD) Measurement by Optical Probe, In-Situ Inc., 221 E Lincoln Ave., Ft. Collins, CO 80524 http://www.in-situ.com/RDO_EPA_Approval .</ref>
 
== Dissolved oxygen probes: Membrane and luminescence ==
 
Since the publication of a simple, accurate and direct dissolved oxygen analytical procedure by Winkler,<ref>Winkler, L. W. (1888). "Die zur Bestimmung des in Wasser gelösten Sauerstoffes " Berichte der Deutschen Chemischen Gesellschaft 21(2): 2843-2854.</ref> the analysis of dissolved oxygen levels for water has been key to the determination of surface water purity and ecological wellness. The Winkler method is still one of only two analytical techniques used to calibrate oxygen electrode meters; the other procedure is based on oxygen solubility at saturation as per [[Henry's law]]. Though many researchers have refined the Winkler analysis to dissolved oxygen levels in the low PPB range, the method does not lend itself to automation.
 
The development of an analytical instrument that utilizes the reduction-oxidation (redox) chemistry of oxygen in the presence of dissimilar metal electrodes was introduced during the 1950s.<ref>Kemula, W. and S. Siekierski (1950). "Polarometric determination of oxygen." Collect. Czech. Chem. Commun. 15: 1069-75.</ref> This redox electrode utilized an oxygen-permeable membrane to allow the diffusion of the gas into an electrochemical cell and its concentration determined by polarographic or galvanic electrodes. This analytical method is sensitive and accurate down to levels of ± 0.1&nbsp;mg/l dissolved oxygen. Calibration of the redox electrode of this membrane electrode still requires the use of the Henry’s law table or the [[Winkler test for dissolved oxygen]].
 
During the last two decades,{{When|date=May 2013}} a new form of electrode was developed based on the luminescence emission of a photo-active chemical compound and the quenching of that emission by oxygen. This quenching photophysics mechanism is described by the Stern–Volmer equation for dissolved oxygen in a solution:<ref>Garcia-Fresnadillo, D., M. D. Marazuela, et al. (1999). "Luminescent Nafion Membranes Dyed with Ruthenium(II) Complexes as Sensing Materials for Dissolved Oxygen." Langmuir 15(19): 6451-6459.</ref>
 
:<math>I_0/I~=~1~+~K_{SV}~[O_2]</math>
 
:<math>I~=~Luminescence~in~the~presence~of~oxygen</math>
 
:<math>I_0~=~Luminescence~in~the~absence~of~oxygen</math>
 
:<math>K_{SV}~=~Stern-Volmer~constant~for~oxygen~quenching</math>
 
:<math>[O_2]~=~Dissolved~oxygen~concentration</math>
The determination of oxygen concentration by luminescence quenching has a linear response over a broad range of oxygen concentrations and has excellent accuracy and reproducibility.<ref>Titze, J., H. Walter, et al. (2008). "Evaluation of a new optical sensor for measuring dissolved oxygen by comparison with standard analytical methods." Monatsschr. Brauwiss.(Mar./Apr.): 66-80.</ref>  
There are two recognized EPA methods for the measurement of dissolved oxygen for CBOD:
*Standard Methods for the Examination of Water and Wastewater, Method 4500 O<ref>Lenore S. Clescerl, Andrew D. Eaton, Eugene W. Rice (2005). Standard Methods for Examination of Water & Wastewater (21st ed.). Washington, DC: American Public Health Association, American Water Works Association, and the Water Environment Association ISBN 0-87553-047-8 Also available by online subscription at http://www.standardmethods.org</ref>
*In-Situ Inc. Method 1002-8-2009 Dissolved Oxygen Measurement by Optical Probe.<ref>In-Situ Inc. Method 1002-8-2009 Dissolved Oxygen Measurement by Optical Probe, In-Situ Inc., 221 E Lincoln Ave., Ft. Collins, CO 80524 http://www.in-situ.com/RDO_EPA_Approval</ref>
 
== CBOD Method Summary ==
 
Bring the sample to ambient room temperature. If pH of sample is <6.5 or >7.5 neutralize the sample to approximately a pH of 7.0 using either sulfuric acid or sodium hydroxide. Aliquots of the neutralized sample are transferred to 300 mL CBOD bottles. These CBOD samples must be at concentrations that will deplete by at least 2&nbsp;mg/L dissolved oxygen (DO) and have at least 1&nbsp;mg/L DO left after five days of incubation. Therefore make enough dilutions (minimum of 3) of the prepared sample to bracket the predicted CBOD.
 
The minimum aliquot volume transferred to a 300 mL CBOD bottle will be 3 mL as set by Standard Methods. If a smaller volume is needed to meet the DO depletion requirements, then you must make dilutions to the sample.  Add approximately 0.1 g of Nitrification Inhibitor (2-chloro-6-(trichloro-methyl) pyridine) to each 300mL CBOD bottle before adding CBOD dilution water. If the sample is being prepared as a seeded sample, add enough prepared seed to the sample to achieve acceptable dissolved oxygen depletion. Add CBOD Dilution water to each CBOD sample bottle so as to completely fill the bottle with no air spaces or bubbles when the stopper is placed in the bottle.
 
Place the dissolved oxygen probe in the bottle and allow the dissolved oxygen meter to come to equilibrium. Allow the meter to come to equilibrium prior to accepting dissolved oxygen value. Record the DO of the sample, stopper the bottle, add DI water to the water seal if needed, cap the water seal, and incubate for 5 days at 20°C ± 1°C. Exclude light to avoid growth of algae in the bottles during incubation.
 
Upon completion of the 5-day incubation± 6 hours, record the DO of the depleted samples with a calibrated DO meter. Allow the meter to come to equilibrium prior to accepting dissolved oxygen value. Calculate the CBODs from the formula below. Only bottles, including seed controls, giving a minimum DO depletion of 2.0&nbsp;mg/L and a residual DO of at least 1.0&nbsp;mg/L after 5 days of incubation are considered to produce valid data, because at least 2.0&nbsp;mg oxygen uptake per L is required to give a meaningful measure of oxygen uptake and at least 1.0&nbsp;mg/L must remain throughout the test to ensure that insufficient DO does not affect the rate of oxidation of waste constituents.
 
== Bacterial Seed CBOD Correction ==
 
Seed CBOD Uptake: Typically a 10, 20, and 30 mL sample of seed added to 3 separate CBOD bottles with approximately 0.1 g Nitrification Inhibitor and diluted with CBOD dilution water. Run these QC samples with each batch of seeded CBOD. Calculate the DO uptake per mL of seed added to each bottle using either the slope method or the ratio method.
 
For the slope method, plot DO depletion in milligrams per liter versus mLs of seed for all seed control bottles having a 2.0&nbsp;mg/L depletion and 1.0 minimum residual DO. The plot should present a straight line for which the slope indicates DO depletion per mL of seed. The DO-axis intercept is oxygen depletion caused by the dilution water and should be less than 0.20&nbsp;mg/L.
 
For the ratio method, divide the DO depletion by the volume of seed in mLs for each seed control bottle having a 2.0&nbsp;mg/L depletion and greater than 1.0&nbsp;mg/L minimum residual DO and average the results.
 
== CBOD Seed ==
 
The CBOD test is method defined. Factors such as bacterial seed viability, anoxic stress during the 5 days, and nitrogenous inhibition efficacy will produce method variability between duplicates, analysts and laboratories. Clear quality assurance and quality control limits must be developed to produce valid results.
 
== Sample Toxicity ==
 
Wastewater by definition may contain pollutants that inhibit bacterial seed metabolisms or are toxic to the seed. In these cases, all samples should be seeded with a known amount of viable bacteria for the MBOD analysis. Toxicity or inhibition is observed in CBOD analysis when the calculated CBOD increases with progressive dilutions of the sample.
 
== Appropriate Microbial Population ==
 
Selection of a viable microbial population for the CBOD analysis is key in obtaining valid results. The bacterial population needs both carbonaceous and nitrogenous strains present. Sources of viable bacterial seed can be primary clarifier effluent, non-disinfected secondary clarifier effluent or a commercial seed preparation. Each source should have clear quality assurance and quality control requirements set by the glucose-glutamic acid check sample.
 
== Glucose-Glutamic Acid Check Sample ==
 
Transfer a known amount of glucose-glutamic acid solution to a CBOD bottle and add sufficient seed to achieve acceptable dissolved oxygen depletion. Fill CBOD bottle with CBOD dilution water and Nitrification Inhibitor. Determine the 5 Day CBOD. Passing results will have a CBOD of 198 (+ 30.5) mg/L. Run these check samples with each batch of CBOD samples. It is important to realize that glucose-glutamic acid is not intended to be an accuracy check in the test.  Its sole purpose is to demonstrate that the seed is viable and metabolizing in the proper range of activity under the conditions of the test.
 
== Regulatory use of CBOD ==
 
In order to reduce a wastewater plants BOD<sub>5</sub> values to meet regulatory compliance requirements, some plant operators try to suppress [[nitrification]] when they are not required to meet ammonia limits. This practice usually results in increased effluent toxicity and oxygen demand on the receiving waters. Therefore, to eliminate this situation and because the BOD<sub>5</sub> test is not reflective of effluent quality under nitrifying conditions, the wastewater plant should:
 
1. Perform parallel CBOD<sub>5</sub> and BOD<sub>5</sub> tests to indicate whether there is a problem with BOD<sub>5</sub> compliance due to nitrification in the BOD<sub>5</sub> test results and that the CBOD<sub>5</sub> is not directly correlated with the BOD<sub>5</sub> test results, and
 
2. Baseline wastewater plant influent and effluent ammonia, nitrite and nitrate data (same frequency and duration as the parallel CBOD<sub>5</sub> and BOD<sub>5</sub> data) have been provided to perform mass balances for nitrification inhibition.
The results of these analysis can show that CBOD<sub>5</sub> should be utilized for regulatory compliance with wastewater discharge requirements.
 
== See also ==
 
*[[Biochemical oxygen demand]]
*[[Chemical oxygen demand]]
*[[Theoretical oxygen demand]]
*[[Wastewater quality indicators]] (Discusses both BOD and COD as indicators of wastewater quality.)
 
== References ==
 
{{reflist}}
 
== External links ==
*[http://cfpub.epa.gov/npdes/ National Pollutant Discharge Elimination System (NPDES)]
*[http://www.epa.gov/regulations/laws/cwa.html Summary of the Clean Water Act]
*[http://water.usgs.gov/owq/FieldManual/Chapter7-Archive/chapter7.2/pdf/7.2.pdf U.S. Geological Survey TWRI Book 9 Chapter A7.2 Five-day Biochemical Oxygen Demand]
 
{{DEFAULTSORT:Carbonaceous Biochemical Oxygen Demand}}
[[Category:Anaerobic digestion]]
[[Category:Chemical oceanography]]
[[Category:Environmental chemistry]]
[[Category:Aquatic ecology]]
[[Category:Water quality indicators]]

Revision as of 23:23, 17 September 2013

Carbonaceous biochemical oxygen demand or CBOD is a method defined test measured by the depletion of dissolved oxygen by biological organisms in a body of water in which the contribution from nitrogenous bacteria has been suppressed. CBOD is a method defined parameter is widely used as an indication of the pollutant removal from wastewater. It is listed as a conventional pollutant in the U.S. Clean Water Act.

The CBOD5 test

The CBOD tests have the widest application in measuring waste loadings to treatment plants and in evaluating the CBOD-removal efficiency of such treatment systems. The test measures the molecular oxygen utilized during a specified incubation period for the biochemical degradation of organic material (carbonaceous demand) and the oxygen used to oxidize inorganic material such as sulfides and ferrous iron. It also may measure the amount of oxygen used to oxidize reduced forms of nitrogen (nitrogenous demand) unless their oxidation is prevented by an inhibitor. The seeding and dilution procedures provide an estimate of the CBOD at pH 6.5 to 7.5.

There are two recognized EPA methods for the measurement of CBOD:

  • Standard Methods for the Examination of Water and Wastewater, Method 5210B[1]
  • In-Situ Inc. Method 1004-8-2009 Carbonaceous Biochemical Oxygen Demand (CBOD) Measurement by Optical Probe.[2]

Dissolved oxygen probes: Membrane and luminescence

Since the publication of a simple, accurate and direct dissolved oxygen analytical procedure by Winkler,[3] the analysis of dissolved oxygen levels for water has been key to the determination of surface water purity and ecological wellness. The Winkler method is still one of only two analytical techniques used to calibrate oxygen electrode meters; the other procedure is based on oxygen solubility at saturation as per Henry's law. Though many researchers have refined the Winkler analysis to dissolved oxygen levels in the low PPB range, the method does not lend itself to automation.

The development of an analytical instrument that utilizes the reduction-oxidation (redox) chemistry of oxygen in the presence of dissimilar metal electrodes was introduced during the 1950s.[4] This redox electrode utilized an oxygen-permeable membrane to allow the diffusion of the gas into an electrochemical cell and its concentration determined by polarographic or galvanic electrodes. This analytical method is sensitive and accurate down to levels of ± 0.1 mg/l dissolved oxygen. Calibration of the redox electrode of this membrane electrode still requires the use of the Henry’s law table or the Winkler test for dissolved oxygen.

During the last two decades,Template:When a new form of electrode was developed based on the luminescence emission of a photo-active chemical compound and the quenching of that emission by oxygen. This quenching photophysics mechanism is described by the Stern–Volmer equation for dissolved oxygen in a solution:[5]

The determination of oxygen concentration by luminescence quenching has a linear response over a broad range of oxygen concentrations and has excellent accuracy and reproducibility.[6] There are two recognized EPA methods for the measurement of dissolved oxygen for CBOD:

  • Standard Methods for the Examination of Water and Wastewater, Method 4500 O[7]
  • In-Situ Inc. Method 1002-8-2009 Dissolved Oxygen Measurement by Optical Probe.[8]

CBOD Method Summary

Bring the sample to ambient room temperature. If pH of sample is <6.5 or >7.5 neutralize the sample to approximately a pH of 7.0 using either sulfuric acid or sodium hydroxide. Aliquots of the neutralized sample are transferred to 300 mL CBOD bottles. These CBOD samples must be at concentrations that will deplete by at least 2 mg/L dissolved oxygen (DO) and have at least 1 mg/L DO left after five days of incubation. Therefore make enough dilutions (minimum of 3) of the prepared sample to bracket the predicted CBOD.

The minimum aliquot volume transferred to a 300 mL CBOD bottle will be 3 mL as set by Standard Methods. If a smaller volume is needed to meet the DO depletion requirements, then you must make dilutions to the sample. Add approximately 0.1 g of Nitrification Inhibitor (2-chloro-6-(trichloro-methyl) pyridine) to each 300mL CBOD bottle before adding CBOD dilution water. If the sample is being prepared as a seeded sample, add enough prepared seed to the sample to achieve acceptable dissolved oxygen depletion. Add CBOD Dilution water to each CBOD sample bottle so as to completely fill the bottle with no air spaces or bubbles when the stopper is placed in the bottle.

Place the dissolved oxygen probe in the bottle and allow the dissolved oxygen meter to come to equilibrium. Allow the meter to come to equilibrium prior to accepting dissolved oxygen value. Record the DO of the sample, stopper the bottle, add DI water to the water seal if needed, cap the water seal, and incubate for 5 days at 20°C ± 1°C. Exclude light to avoid growth of algae in the bottles during incubation.

Upon completion of the 5-day incubation± 6 hours, record the DO of the depleted samples with a calibrated DO meter. Allow the meter to come to equilibrium prior to accepting dissolved oxygen value. Calculate the CBODs from the formula below. Only bottles, including seed controls, giving a minimum DO depletion of 2.0 mg/L and a residual DO of at least 1.0 mg/L after 5 days of incubation are considered to produce valid data, because at least 2.0 mg oxygen uptake per L is required to give a meaningful measure of oxygen uptake and at least 1.0 mg/L must remain throughout the test to ensure that insufficient DO does not affect the rate of oxidation of waste constituents.

Bacterial Seed CBOD Correction

Seed CBOD Uptake: Typically a 10, 20, and 30 mL sample of seed added to 3 separate CBOD bottles with approximately 0.1 g Nitrification Inhibitor and diluted with CBOD dilution water. Run these QC samples with each batch of seeded CBOD. Calculate the DO uptake per mL of seed added to each bottle using either the slope method or the ratio method.

For the slope method, plot DO depletion in milligrams per liter versus mLs of seed for all seed control bottles having a 2.0 mg/L depletion and 1.0 minimum residual DO. The plot should present a straight line for which the slope indicates DO depletion per mL of seed. The DO-axis intercept is oxygen depletion caused by the dilution water and should be less than 0.20 mg/L.

For the ratio method, divide the DO depletion by the volume of seed in mLs for each seed control bottle having a 2.0 mg/L depletion and greater than 1.0 mg/L minimum residual DO and average the results.

CBOD Seed

The CBOD test is method defined. Factors such as bacterial seed viability, anoxic stress during the 5 days, and nitrogenous inhibition efficacy will produce method variability between duplicates, analysts and laboratories. Clear quality assurance and quality control limits must be developed to produce valid results.

Sample Toxicity

Wastewater by definition may contain pollutants that inhibit bacterial seed metabolisms or are toxic to the seed. In these cases, all samples should be seeded with a known amount of viable bacteria for the MBOD analysis. Toxicity or inhibition is observed in CBOD analysis when the calculated CBOD increases with progressive dilutions of the sample.

Appropriate Microbial Population

Selection of a viable microbial population for the CBOD analysis is key in obtaining valid results. The bacterial population needs both carbonaceous and nitrogenous strains present. Sources of viable bacterial seed can be primary clarifier effluent, non-disinfected secondary clarifier effluent or a commercial seed preparation. Each source should have clear quality assurance and quality control requirements set by the glucose-glutamic acid check sample.

Glucose-Glutamic Acid Check Sample

Transfer a known amount of glucose-glutamic acid solution to a CBOD bottle and add sufficient seed to achieve acceptable dissolved oxygen depletion. Fill CBOD bottle with CBOD dilution water and Nitrification Inhibitor. Determine the 5 Day CBOD. Passing results will have a CBOD of 198 (+ 30.5) mg/L. Run these check samples with each batch of CBOD samples. It is important to realize that glucose-glutamic acid is not intended to be an accuracy check in the test. Its sole purpose is to demonstrate that the seed is viable and metabolizing in the proper range of activity under the conditions of the test.

Regulatory use of CBOD

In order to reduce a wastewater plants BOD5 values to meet regulatory compliance requirements, some plant operators try to suppress nitrification when they are not required to meet ammonia limits. This practice usually results in increased effluent toxicity and oxygen demand on the receiving waters. Therefore, to eliminate this situation and because the BOD5 test is not reflective of effluent quality under nitrifying conditions, the wastewater plant should:

1. Perform parallel CBOD5 and BOD5 tests to indicate whether there is a problem with BOD5 compliance due to nitrification in the BOD5 test results and that the CBOD5 is not directly correlated with the BOD5 test results, and

2. Baseline wastewater plant influent and effluent ammonia, nitrite and nitrate data (same frequency and duration as the parallel CBOD5 and BOD5 data) have been provided to perform mass balances for nitrification inhibition. The results of these analysis can show that CBOD5 should be utilized for regulatory compliance with wastewater discharge requirements.

See also

References

43 year old Petroleum Engineer Harry from Deep River, usually spends time with hobbies and interests like renting movies, property developers in singapore new condominium and vehicle racing. Constantly enjoys going to destinations like Camino Real de Tierra Adentro.

External links

  1. Lenore S. Clesceri, Andrew D. Eaton, Eugene W. Rice (2005). Standard Methods for Examination of Water & Wastewater Method 5210B. Washington, DC: American Public Health Association, American Water Works Association, and the Water Environment Association. Also available by online subscription at http://www.standardmethods.org .
  2. In-Situ Inc. Method 1004-8-2009 Carbonaceous Biochemical Oxygen Demand (CBOD) Measurement by Optical Probe, In-Situ Inc., 221 E Lincoln Ave., Ft. Collins, CO 80524 http://www.in-situ.com/RDO_EPA_Approval .
  3. Winkler, L. W. (1888). "Die zur Bestimmung des in Wasser gelösten Sauerstoffes " Berichte der Deutschen Chemischen Gesellschaft 21(2): 2843-2854.
  4. Kemula, W. and S. Siekierski (1950). "Polarometric determination of oxygen." Collect. Czech. Chem. Commun. 15: 1069-75.
  5. Garcia-Fresnadillo, D., M. D. Marazuela, et al. (1999). "Luminescent Nafion Membranes Dyed with Ruthenium(II) Complexes as Sensing Materials for Dissolved Oxygen." Langmuir 15(19): 6451-6459.
  6. Titze, J., H. Walter, et al. (2008). "Evaluation of a new optical sensor for measuring dissolved oxygen by comparison with standard analytical methods." Monatsschr. Brauwiss.(Mar./Apr.): 66-80.
  7. Lenore S. Clescerl, Andrew D. Eaton, Eugene W. Rice (2005). Standard Methods for Examination of Water & Wastewater (21st ed.). Washington, DC: American Public Health Association, American Water Works Association, and the Water Environment Association ISBN 0-87553-047-8 Also available by online subscription at http://www.standardmethods.org
  8. In-Situ Inc. Method 1002-8-2009 Dissolved Oxygen Measurement by Optical Probe, In-Situ Inc., 221 E Lincoln Ave., Ft. Collins, CO 80524 http://www.in-situ.com/RDO_EPA_Approval