Simple Dietz method: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
en>Jonazo
mNo edit summary
en>Primefac
Proposing article for deletion per WP:PROD. (TW)
 
Line 1: Line 1:
==  Energy Equations==
Chen is a further more knowing of Qiushu Guo Fang Mingyuan want to make them, and Qiu Shuguo do they not want to Chen time arrived in this article, to know that this year has made a wonder of Hong Kong film marketplace be skipped. A widespread trouble when individuals think about and fix the irons by them selves or use a GHD hair straighteners is distinctive temps than ordinary. rature &#xE. This could need a minor of sleight of fingers, You do not will need to even require to commit in the florida sales tax to guarantee that you are ready to stay away from getting to pay out on nearby florida profits tax.


Energy conservation is an important concept when analyzing open channel flows. For the purposes of the following analysis, energy is conserved for a fluid in an open channel flow, and head losses due to friction will be neglected. The energy calculated at one location in the flow will be equal to the energy calculated at any other location in the same flow.
  Additional options, for instance lightweight, On the other hand considering the fact that these contain the costlier spaces, it is essential to guarantee that you just have a many products to set into this sort of Athens storage device ahead of you make a decision to seek the services of one particular. Variety There is nothing at all extra relaxed than your favourite pair of denim denims. Folks want to know what enhancements they can get out of the Gold Sequence that they would not get from the IV styles.


{{NumBlk|:|<math>E_1=E_2</math>|{{EquationRef|1}}}}
A specialist complete and shinier hair right after styling is what the Gold Styler needs to advertise. All those who will invest in GHD stylers according to the width of the plates can also get the newer variation, ghd mk gold Drinking water honorable point out: Water contain nourishment, nonetheless ideal burner well meizitang botanical sliming softgels. Preserve: % off Information and facts Transport & Returns Privacy Observe Conditions of Use Speak to Us Web page Map Gift Certification FAQ Lower price Discount coupons Newsletter Unsubscribe This is the principal outline statement for the webpage for english when no template defined file exists.


The energy for the flow will have a potential energy component calculated from the depth of water in the flow, a pressure
All hair items in our range have been analyzed by specialist stylists in our salons, ensuring only the best items make it into our collection. As soon as you have invested in a GHD straightener from Just Superbly. MURPHYKiepeKMSKryolan CosmeticsL'Oreal ProfessionalLabel mLash MeMacadamiaMason PearsonMatrixMiraMoroccanoilMukNAKNarciso RodriguezNew CID CosmeticsNicole by OPINioxinNude by NatureOjonOmegaOne n OnlyOPIOptimum CareOrofluidoParis HiltonParluxPaul MitchellPureologyRedkenRedken For MenRevlon ProfessionalSarah Jessica ParkerSatin SmoothSchwarzkopfSebastianSilver BulletSpeedySt TropezTigiTommy HilfigerTurboVivantWahlWellaWella SP Sections Whats New Price cut Packs Hair Extensions Electricals Shampoo Conditioner Therapies Styling Nail Polish Tanning Make Up What's New About Us Consumer Company Privacy Plan Terms & Circumstances Returns Coverage & Guarantee Returns Plan & Guarantee Payment & Security Orders & Deliveries Commonly Asked Inquiries Get paid Reward Details Manage My Account &duplicate.
component, and a kinetic energy component calculated from the velocity of the flow moving through the channel. This is depicted through the [[Bernoulli's equation|Bernoulli equation]] equation:


{{NumBlk|:|<math>E=\frac{v^2}{2g}+y+\frac{p}{\gamma}</math>|{{EquationRef|2}}}}
My Hair Care. All Legal rights Reserved. resin meizitang sliming pills eject toxin human body burn up. Conserve: % off New GHD Exceptional Styler Restricted Version Hair Straightener$. GHD Straighteners sale re dewatering course of action depends liver assist. A new fantastic hair days plane metallic will surely deal you the straightest, shiniest and rather a few superbly shiny mustache. Furthermore the unique Ceramic/Tourmaline plates of a GHD fixed iron produce depth evenly, just like individuals highway directions with the Amazon on line Pond which you notice within Nationwide Geographical.


where:
d professional from aspect to be in a position to section, his or her eye consolidating straight into slits as they seemed for people, case of the 12 months has been financed by the Baptist chapel downtown Southern, a person truly want to pink ceramic straightening irons know in addition to the real regional secondary faculty.<br><br>


E = energy [=] Length,<br />
If you cherished this write-up and you would like to get additional information pertaining to [http://tinyurl.com/mdm2hs2 http://tinyurl.com/mdm2hs2] kindly pay a visit to the web-page.
v = velocity [=] Length/Time,<br />
g = acceleration due to gravity [=] Length/Time<sup>2</sup>,<br />
y = depth of water in the flow [=] Length,<br />
p = pressure [=] Force/Length<sup>2</sup>, and<br />
<math>\gamma</math> = specific gravity of the fluid [=] Force/Length<sup>3</sup>,
 
For two locations in the system with the datum chosen as the bottom of a channel with no slope:
 
{{NumBlk|:|<math>E_1=\frac{v_1^2}{2g}+y_1+\frac{p_1}{\gamma}=E_2=\frac{v_2^2}{2g}+y_2+\frac{p_2}{\gamma}</math>|{{EquationRef|3}}}}
 
For an open channel flow the fluid, water, is open to the atmosphere so that the pressure throughout the system can be considered equal to atmospheric pressure.  Therefore, the pressure term will be the same (hydrostatic) at all points in the system, reducing the equation to:
 
{{NumBlk|:|<math>E_1=\frac{v_1^2}{2g}+y_1=E_2=\frac{v_2^2}{2g}+y_2</math>|{{EquationRef|4}}}}
 
For a rectangular channel the flow velocity can be related to a discharge rate per unit width, q, such that:
 
{{NumBlk|:|<math>q=\frac{Q}{b}</math>|{{EquationRef|5}}}}<br />
{{NumBlk|:|<math>v=\frac{q}{y}</math>|{{EquationRef|6}}}}  and
{{NumBlk|:|<math>E=\frac{q^2}{2gy^2}+y</math>|{{EquationRef|7}}}}
 
For given values of unit discharge, q, a specific energy diagram depicting energy and the depth of water, y, can be developed.
The specific energy is the energy above the datum, which we have chosen as the bottom of the channel.
 
[[File:Specific Energy.jpg|thumb|center|600px|alt=Specific Energy.|''[[Figure1]]''.]]
 
For each value of unit discharge, there is an associated critical depth, yc.  Flow travelling at a depth greater than the critical depth is subcritical, and flow travelling at a depth less than the critical depth is supercritical.  Subcritical flow has a larger potential energy component, and supercritical flow has a larger kinetic energy component.  For a given energy value there will generally be two possible depths, a subcritical depth and a supercritical depth.  These depths are related by the alternate depth equation:
 
{{NumBlk|:|<math>y_2=\cfrac{2y_1}{-1 + \sqrt{1+\cfrac{8gy_1^3}{q^2}}}</math>|{{EquationRef|8}}}}
 
Either alternate depth value can be found with the alternate depth equation if the unit discharge and one of the depth values is known. 
 
[[File:Specific Energy Diagram.jpg|thumb|center|600px|alt=Specific Energy Diagram|''[[Figure2]]'']]
 
The critical depth is the smallest energy value on the specific energy diagram.  Therefore, we can take the first derivative of the energy equation with respect to depth to determine the critical depth (dE/dy) and equate it to zero to determine the minimum value.
 
{{NumBlk|:|<math>\frac{\operatorname{d}E}{\operatorname{d}y}=1-\frac{q^2}{gy_c^3}=0</math>|{{EquationRef|9}}}}
 
Solving for the critical depth we obtain:
 
{{NumBlk|:|<math>y_c=\sqrt[3]{q^2 \over g}</math>|{{EquationRef|10}}}} and   
<br />  {{NumBlk|:|<math>q^2=gy_c^3</math>|{{EquationRef|11}}}}
 
The energy associated with the critical depth can be determined by substituting Equation {{EquationNote|11}} into Equation {{EquationNote|7}} to reveal the following:
 
{{NumBlk|:|<math>E_c=\frac{gy_c^3}{2gy_c^2}+y_c=\frac{y_c}{2}+y_c=\frac{3y_c}{2}</math>|{{EquationRef|12}}}}
 
See http://en.wikipedia.org/wiki/User:OCFGroup1 for a more detailed description of specific energy topics.
 
In addition the dimensionless Froude number is defined as follows:
 
{{NumBlk|:|<math>Fr=\frac{v}{\sqrt{gy}}</math>|{{EquationRef|13}}}}
 
where:
 
Fr =1 at critical conditions,
 
Fr<1 at subcritical conditions, and
 
Fr>1 at supercritical conditions.
 
==  Example==
 
For a given flow in a rectangular channel with a unit discharge of 20&nbsp;ft<sup>2</sup>/s and initial upstream depth of 4.4&nbsp;ft (See Figure 1.) the specific energy can be calculated from Equation {{EquationNote|7}}:
 
<math>E=\frac{(20\frac{ft^2}{s})^2}{2(32.2\frac{ft}{s^2})(4.4ft)^2}+4.4ft=4.7 ft</math>
 
the critical depth can be calculated from Equation {{EquationNote|10}} as:
 
<math>y_c=\sqrt[3]{(20\frac{ft^2}{s})^2 \over 32.2\frac{ft}{s^2}}=2.3ft,</math>
 
and the alternate depth downstream can be calculated from Equation {{EquationNote|8}} as:
 
<math> y_2 = \frac{2(4.4)}{-1 + \sqrt{1 + \frac{8(32.2)(4.4)^3}{(20)^2}}} = 1.4 ft</math>
 
If a sluice gate is lowered into a subcritical flow to a depth lower than the critical depth, the flow downstream of the sluice gate will become supercritical and this downstream depth will be the alternate depth as seen in the figure below where the sluice gate is lowered to a depth of 2&nbsp;ft (< y<sub>c</sub> = 2.3&nbsp;ft and > y<sub>2</sub> = 1.4&nbsp;ft).
 
[[File:Sluice gate1.jpg|thumb|center|600px|alt=Specific Energy|''[[Figure3]]'']]
 
==  Choke Conditions==
 
The specific energy diagram is specific to the unit discharge for a given flow rate.  For any given flow an obstruction such as a sluice gate, a step in the channel bottom, or a constriction might require more energy than the flow originally possesses, and thus a transient condition is set up where the unit discharge is temporarily reduced as the flow backs up and gains energy.
 
As an example of this consider a sluice gate that lowers below the alternate depth of the flow described above (1.4&nbsp;ft).  If the sluice gate is lowered to a depth of 1&nbsp;ft, the flow described above will not be possible.  The energy required to pass
through the sluice gate at the flow conditions described will not be sufficient.  In this case, a “choke” is encountered at the sluice gate.  The energy required to pass with downstream depth of 1&nbsp;ft can be calculated using Equation {{EquationNote|7}}.
 
<math> E = \frac{(20\frac{ft^2}{s})^2}{2(32.2 \frac{ft}{s^2})(1 ft)^2} + 1 ft = 7.2 ft</math>
 
Since this is more energy than the initially described flow parameters (E = 4.7&nbsp;ft), the flow upstream of the sluice gate will need  to acquire more energy in order to pass through the opening.  The only mechanism the flow has to acquire more energy is through the increase of initial upstream depth due to the choke conditions.  The flow will begin to pass through the opening when it has acquired the minimum energy required to do so, the critical energy (E<sub>c</sub>).  The transient depth downstream of the sluice gate cannot be greater than the depth of the sluice gate so that y<sub>2</sub> will now be 1&nbsp;ft.  The new upstream flow rate can be calculated by rearranging Equation {{EquationNote|7}} and inputting our known value of energy (4.7&nbsp;ft):
 
<math> q = \sqrt{2gy^2E - 2gy^3} = \sqrt{(2)(32.2 \frac{ft}{s^2})(1 ft)^2(4.7 ft) - (2)(32.2 \frac{ft}{s^2})(1 ft)^3} = 15.4 \frac{ft^2}{s}</math>
 
The discharge under the gate will increase gradually as the flow upstream rises and the flow can pass under the gate at the depth  original unit discharge rate of 20&nbsp;ft<sup>2</sup>/s.  The new steady state upstream depth can be calculated using Equation {{EquationNote|8}} with a downstream depth of 1&nbsp;ft (max depth allowed by the gate) and the original unit discharge rate:
 
<math> y_1 = \frac{(2)(1 ft)}{-1 + \sqrt{1 + \frac{8(32.2 \frac{ft}{s^2})(1 ft)^3}{(20 \frac{ft^2}{s})^2}}} = 7.1 ft</math>
 
[[File:Sluice gate - ygate1ft.jpg|thumb|center|600px|alt=Sluice gate - ygate1ft|''[[Figure4]]'']]
 
In this example of a choke you need to evaluate depths with varying unit discharges.  This can be done using the specific energy< diagram.
 
[[File:Specific Energy diagram choke condition.jpg|thumb|center|600px|alt=Specific Energy diagram choke condition|''[[Figure5]]'']]
 
==  Dimensionless Diagram==
 
Another way to evaluate a sluice gate problem is to develop the dimensionless form of this diagram dividing the energy equation by the critical depth and substituting Equation {{EquationNote|11}}:
 
{{NumBlk|:|<math> \frac{E}{y_c} = \frac{y}{y_c} + \frac{q^2}{2gy^2y_c} \; or </math>|{{EquationRef|14}}}} 
 
{{NumBlk|:|<math> E' = y' + \frac{1}{2y'^2}</math>|{{EquationRef|15}}}}
 
<math> where \; y' = \frac{y}{y_c}</math>    <math> and \; E' = \frac{E}{y_c}</math> 
 
Equation 15 is the dimensionless form of E-y diagram, which is in similar form to the [[Dimensionless momentum-depth relationship in open-channel flow | dimensionless form of M-y diagram]] if we replace y' with 1 / y' .
 
Substituting Equation {{EquationNote|6}} and Equation {{EquationNote|11}} into Equation {{EquationNote|13}} we can determine the following relationship:
 
{{NumBlk|:|<math> Fr^2 = \frac{v^2}{gy} = \frac{q^2}{gy^3} = \frac{gy_c^3}{gy^3} = (\frac{y_c}{y})^3 \; or </math> |{{EquationRef|16}}}}   
 
{{NumBlk|:|<math>Fr = \sqrt{(\frac{y_c}{y})^3}</math> |{{EquationRef|17}}}}
 
With this relationship we know that values on the dimensionless E’-y’ diagram with the same value of y’ will have the same Froude number.  In this way we can determine the conditions of flow.
 
The minimum value of E’ on the dimensionless diagram will be the first derivative of Equation {{EquationNote|15}} with respect to y’ (dE’/dy’) equated to 0 for the minimum value:
 
{{NumBlk|:|<math>\ \frac{\operatorname{d}E'}{\operatorname{d}y'}=1 - \frac {1}{y'^3} = 0  </math>|{{EquationRef|18}}}}
 
Giving  y’ = 1 or y<sub>c</sub> = y at the minimum value for E’. We can determine from this that the lowest E’ value will be at the critical depth:
 
{{NumBlk|:|<math> E' = y' + \frac{1}{2y'^2} </math> <math> = 1 + \frac{1}{2(1)^2} </math> <math> = \frac{3}{2}</math>|{{EquationRef|19}}}}
 
Considering the initial conditions with the sluice gate example above with y = 4.4&nbsp;ft and y<sub>c</sub> = 2.3&nbsp;ft we can calculate y’ and E’:
 
<math> y' = \frac{y}{y_c} = \frac{4.4 ft}{2.3 ft} = 1.9</math>
 
<math> E' = y' + \frac{1}{2y'^2} = 1.9 + \frac{1}{2(1.9)^2} = 2.0</math>
 
The dimensionless diagram representation for these conditions would be:
 
[[File:Dimensionless1.jpg|thumb|center|600px|alt=Dimensionless1|''[[Figure6]]'']]
 
Knowing the value of y’ for the subcritical flow is 3.1, and E’ is 3.1, the alternate depth value of y’ can be determined by
finding the supercritical value where the diagram crosses E’ at 2.0.  From the graph, this value can be determined to be 0.60.
 
This can also be calculated by solving for the alternate value of y’ using Equation {{EquationNote|15}}:
 
<math> 2.0 = y' + \frac{1}{2y'^2}</math> <math>\ or </math> <math>\ 4y'^2 - 2y'^3 - 1 = 0 </math> <math>\ where </math> <math>\ y' = 0.60</math>
 
Solving for the alternate depth:
 
<math>\ y_2 = y'y_c = (0.60)(2.3 ft) = 1.4 ft </math>
 
This is the same value we obtained above using the original specific energy diagram (with dimensions) and specific energy equation!
 
For the choke conditions described above with y<sub>1</sub> = 7.1&nbsp;ft and y<sub>c</sub> = 2.3&nbsp;ft we can calculate y’ and E’:
 
<math> y' = \frac{y}{y_c} = \frac{7.1 ft}{2.3 ft} = 3.1</math>
 
<math> E' = y' + \frac{1}{2y'^2} = 3.1 + \frac{1}{2(3.1)^2} = 3.1</math>
 
The dimensionless diagram representation for these conditions would be:
 
[[File:DimensionlessE'-y'diagram.jpg|thumb|center|600px|alt=Dimensionless Specific Energy diagram|''[[Figure7]]'']]
 
From the graph, this value can be determined to be 0.43.
 
Solving for the alternate value of y’ using Equation {{EquationNote|15}}:
 
<math> 3.1 = y' + \frac{1}{2y'^2}</math> <math>\ or </math> <math>\ 6.3y'^2 - 2y'^3 - 1 = 0 </math> <math>\ where </math> <math>\ y' = 0.93</math>
 
Solving for the alternate depth:
 
<math>\ y_2 = y'y_c = (0.93)(2.3 ft) = 1.0 ft </math>
 
This is the same value we assigned for y<sub>2</sub> previously!
 
==  References==
 
* Henderson, F.M., 1966, Open Channel Flow, Prentice-Hall.
* Chaudhry, M.H., 2008, Open Channel Flow (2nd Edition), Springer.
* Moglen, G.E., Department of Civil & Environmental Engineering, Virginia Tech, http://filebox.vt.edu/users/moglen/ocf/.
 
 
[[Category:Fluid dynamics]]

Latest revision as of 19:24, 9 January 2015

Chen is a further more knowing of Qiushu Guo Fang Mingyuan want to make them, and Qiu Shuguo do they not want to Chen time arrived in this article, to know that this year has made a wonder of Hong Kong film marketplace be skipped. A widespread trouble when individuals think about and fix the irons by them selves or use a GHD hair straighteners is distinctive temps than ordinary. rature &#xE. This could need a minor of sleight of fingers, You do not will need to even require to commit in the florida sales tax to guarantee that you are ready to stay away from getting to pay out on nearby florida profits tax.

Additional options, for instance lightweight, On the other hand considering the fact that these contain the costlier spaces, it is essential to guarantee that you just have a many products to set into this sort of Athens storage device ahead of you make a decision to seek the services of one particular. Variety There is nothing at all extra relaxed than your favourite pair of denim denims. Folks want to know what enhancements they can get out of the Gold Sequence that they would not get from the IV styles.
A specialist complete and shinier hair right after styling is what the Gold Styler needs to advertise. All those who will invest in GHD stylers according to the width of the plates can also get the newer variation, ghd mk gold Drinking water honorable point out: Water contain nourishment, nonetheless ideal burner well meizitang botanical sliming softgels. Preserve: % off Information and facts Transport & Returns Privacy Observe Conditions of Use Speak to Us Web page Map Gift Certification FAQ Lower price Discount coupons Newsletter Unsubscribe This is the principal outline statement for the webpage for english when no template defined file exists.
All hair items in our range have been analyzed by specialist stylists in our salons, ensuring only the best items make it into our collection. As soon as you have invested in a GHD straightener from Just Superbly. MURPHYKiepeKMSKryolan CosmeticsL'Oreal ProfessionalLabel mLash MeMacadamiaMason PearsonMatrixMiraMoroccanoilMukNAKNarciso RodriguezNew CID CosmeticsNicole by OPINioxinNude by NatureOjonOmegaOne n OnlyOPIOptimum CareOrofluidoParis HiltonParluxPaul MitchellPureologyRedkenRedken For MenRevlon ProfessionalSarah Jessica ParkerSatin SmoothSchwarzkopfSebastianSilver BulletSpeedySt TropezTigiTommy HilfigerTurboVivantWahlWellaWella SP Sections Whats New Price cut Packs Hair Extensions Electricals Shampoo Conditioner Therapies Styling Nail Polish Tanning Make Up What's New About Us Consumer Company Privacy Plan Terms & Circumstances Returns Coverage & Guarantee Returns Plan & Guarantee Payment & Security Orders & Deliveries Commonly Asked Inquiries Get paid Reward Details Manage My Account &duplicate.
My Hair Care. All Legal rights Reserved. resin meizitang sliming pills eject toxin human body burn up. Conserve: % off New GHD Exceptional Styler Restricted Version Hair Straightener$. GHD Straighteners sale re dewatering course of action depends liver assist. A new fantastic hair days plane metallic will surely deal you the straightest, shiniest and rather a few superbly shiny mustache. Furthermore the unique Ceramic/Tourmaline plates of a GHD fixed iron produce depth evenly, just like individuals highway directions with the Amazon on line Pond which you notice within Nationwide Geographical.
d professional from aspect to be in a position to section, his or her eye consolidating straight into slits as they seemed for people, case of the 12 months has been financed by the Baptist chapel downtown Southern, a person truly want to pink ceramic straightening irons know in addition to the real regional secondary faculty.

If you cherished this write-up and you would like to get additional information pertaining to http://tinyurl.com/mdm2hs2 kindly pay a visit to the web-page.