Toda bracket: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
No edit summary
 
en>David Eppstein
Line 1: Line 1:
== Abercrombie Outlet Schweiz .. ==
'''T-norm fuzzy logics''' are a family of [[non-classical logic]]s, informally delimited by having a semantics which takes the real unit interval [0, 1] for the system of truth values and functions called [[t-norm]]s for permissible interpretations of [[logical conjunction|conjunction]]. They are mainly used in applied [[fuzzy logic]] and [[fuzzy set|fuzzy set theory]] as a theoretical basis for approximate reasoning.


Ich bin aufgrund der im Mai zu absolvieren, und haben derzeit keinen [http://www.duschbad.ch/fabrikladen/client.html Abercrombie Outlet Schweiz] Job, da ich ein Vollzeit-Student. 1.300 crore in Apfelsektor durch eine Erhöhung der Umsatz auf Rs. Ein Lipid E ​​Karte identifiziert Ubx2 als entscheidender Regulator des Lipid Sättigung und Lipiddoppelschicht Stress. <br><br>Entdecken Sie Audio-Segmente, zeigen eine Galerie der Platzbedarf und Handabdruck wirft, werden Berichte über Sichtungen in Wasco County und USA, [http://www.duschbad.ch/fabrikladen/client.html Abercrombie Zürich] Zeitungsberichte, Vergleichs Schädel und Künstler renditions.Buffet Abendessen serviert werden ab 05.30 Uhr in der Basalt-Felsen Caf mit . <br><br>Stellen Sie in den späten 1930er Jahren, Und dann gabs keines sah eine Gruppe von 10 Fremden unter verschiedenen Vorspiegelung falscher Tatsachen zu einem Herrenhaus auf einer abgelegenen Insel vor der Küste von Devon, England, wo sie alle als Täter der Morde denen das Gesetz ausgesetzt eingeladen, aus verschiedenen Gründen, nicht berühren.. <br><br>Keines der beiden Unternehmen wird der Absender, die das Geld abgeholt, zu welchem ​​Speicherort oder auch, in welchem ​​Land Sie Ihr Geld ging aus der Tür zu erzählen.. Es ist wirklich von SilverbackJane auf 2012 08 23 14.18.10 old.Posted gut, wenn Sie disagreee Sie müssen es nehmen mit den Gesetzgeber und die Herausforderung in einem Gericht, nicht nur annehmen, dass Sie glauben können, was u wollen Cuz u rief eine Wahl. <br><br>Wenn es um die Verwendung der Daten zu erstellen, um relevante Gespräche geht, können Marketer irgendwann am Ende, die mit Silo-und veraltete Daten. Sie waren geschmackvoll, gut gewürzt, und für meinen Geschmack nur etwas verkocht (aber ich bevorzuge Lamm auf der selteneren Neben normalerweise).. <br><br>Karsten, Chris [http://www.frauenhaus-steyr.at/htm/Grossansichten/header.htm Louis Vuitton Wien] Johnson ("The Vampire Diaries") als Drew, Wendy Moniz ("Guiding Light", "The Guardian"), wie Elaine, Elizabeth McLaughlin ("Die Clique") und Val und Braeden Lamasters ("Men of a Certain Age "), wie Vic ... Macht Sinn, aber was ist ein Weltklasse-Unternehmen? Wer definiert Weltklasse? Die Tatsache, dass Sie zur Verfügung stellen (oder hoffen, zur Verfügung zu stellen) Produkte oder Dienstleistungen einem weltweiten Kundenstamm, bedeutet nicht, ein Weltklasse-Unternehmen sind .. <br><br>En el aero lo usar en el Steuer de Seguridad, ADUANAS y Migraciones; Benutzung el boleto electrnico para un reservar asiento seleccionado o para hacer el Check-in mediante el servicio de prctico Anreise lnea en de Air Canada o en las terminales de [http://www.guggizunft.ch/content/member/style.asp Nike Store Zürich] Anreise rpido , o bien presente una copia de su itinerario / recibo y la correspondiente identificacin einer un agente en el Mostrador de Check-in de Air Canada; Reserve un asiento seleccionado; Los Boletos se pueden comprar hasta una hora antes de la salida (dos horas Antes si se reservan lnea en); Toda cuestin relacionada con Certificados de Ascenso (Upgrade), Equipaje de Bodega zusätlichen y otros servicios especiales se Procesar de la manera habitual.El servicio de Boletos electrnicos ya est disponible en todo y Canad Estados Unidos, al que igual para la mayora de los destinos internacionales.Socios en el servicio de la Boletos electrnicosCon implementacin de la emisin de Boletos Electrnicos Interlineales (IET), los que pasajeros viajan ms en de una aerolnea lo pueden hacer con un solo documento electrnico..<ul>
T-norm fuzzy logics belong in broader classes of [[fuzzy logic]]s and [[many-valued logic]]s. In order to generate a well-behaved [[logical implication|implication]], the t-norms are usually required to be [[left-continuous]]; logics of left-continuous t-norms further belong in the class of [[substructural logic]]s, among which they are marked with the validity of the ''law of prelinearity'',  (''A''&nbsp;&rarr;&nbsp;''B'') &or; (''B''&nbsp;&rarr;&nbsp;''A''). Both [[propositional logic|propositional]] and [[first-order logic|first-order]] (or [[higher-order logic|higher-order]]) t-norm fuzzy logics, as well as their expansions by modal and other operators, are studied. Logics which restrict the t-norm semantics to a subset of the real unit interval (for example, finitely valued Łukasiewicz logics) are usually included in the class as well.
 
  <li>[http://kaixuanmen2120.com/forum.php?mod=viewthread&tid=413757&fromuid=16996 http://kaixuanmen2120.com/forum.php?mod=viewthread&tid=413757&fromuid=16996]</li>
 
  <li>[http://viewofield.egloos.com/4847064/ http://viewofield.egloos.com/4847064/]</li>
 
  <li>[http://f1fanclub.com.au/activity/p/204056/ http://f1fanclub.com.au/activity/p/204056/]</li>
 
  <li>[http://www.philatelie-france-russie.fr/spip.php?article51/ http://www.philatelie-france-russie.fr/spip.php?article51/]</li>
 
  <li>[http://enseignement-lsf.com/spip.php?article64#forum24002716 http://enseignement-lsf.com/spip.php?article64#forum24002716]</li>
 
</ul>


== Nike Free Run  Reserve Bank of India ==
Important examples of t-norm fuzzy logics are [[monoidal t-norm logic|monoidal t-norm logic MTL]] of all left-continuous t-norms, [[BL (logic)|basic logic BL]] of all continuous t-norms, [[product fuzzy logic]] of the product t-norm, or the [[nilpotent minimum logic]] of the nilpotent minimum t-norm. Some independently motivated logics belong among t-norm fuzzy logics, too, for example [[Łukasiewicz logic]] (which is the logic of the Łukasiewicz t-norm) or [[intermediate logic|Gödel–Dummett logic]] (which is the logic of the minimum t-norm).


Geschrieben wurde BYI kostenlose erweiterte Screening-Tickets gegeben, um diesen Film zu sehen, und dass der Film buff, dass ich bin, nahm ich sie und ging und sah es. Mit einem erweiterbaren Bord von 8GB mit 64 GB microSD-Unterstützung, wird das Gerät auf Android 4.2 Jelly Bean Betriebssystem mit TouchWiz UX Natur laufen. <br><br>Aspies neigen dazu, in Gesprächen, die kein anderer als sein Zweck dienen Flunder "höflich." Ein gemeinsames Merkmal Aspie ist eine extreme Intoleranz für Kleidung, die ist zu belasten, juckende oder Bindung in keiner Weise. Für Herr Kumar, Regeln, die aus Gujarat Chef MinisterNarendra Modi, die von vielen als ein Spitzenreiter unter BJP Führer für die Post zu sehen ist. <br><br>[26] Am 20. "Wir glauben an den Zugang zu freien Informationen. Februar 2012 unter maximale Altersgrenze von 45 Jahren und mit Erfahrung im Umgang mit Waffen und Munition beim Militär, können ihre Anträge zusammen mit Fotokopien ihrer Zertifikate / Zeugnisse der Regionaldirektor, Reserve Bank of India, Mumbai Regionalbüro, Human Resource Management-Abteilung, Personal Abschnitt, Hauptgebäude, Fort, Mumbai 400 001, die am oder vor Februar senden . <br><br>D'oh. Zum Glück ist oft alles israelischen Koch über frische, hochwertige Zutaten und intuitiv, aus [http://www.martinaleuenberg.ch/arbeiten/project.html Nike Free Run] der Hüfte Kochtechniken, so dass diese Gerichte können [http://www.guggizunft.ch/content/member/style.asp Nike Schweiz] Sie auf den Tisch in kürzester Zeit. Obwohl die Druckversion des Papiers bleibt sowohl die größte Metropol lokalen Zeitung in den Vereinigten Staaten, sowie die drittgrößte Zeitung insgesamt hinter dem Wall Street Journal und USA Today, hat ihre Wochentagsauflage seit 1990 gefallen ist (wie andere Zeitungen haben) auf [http://www.guggizunft.ch/content/member/style.asp Nike Shoes] weniger als eine Million Exemplare täglich. <br><br>Laut einer Studie sind mehr als ein Drittel der Frauen, die von ethnischen Kirgisen Entführung verheiratet .. In Anbetracht der Tatsache, dass das Unternehmen ganze Geschäft an diesen barfuß Läufer ausgerichtet, es ist ein echtes Zeichen von einem Sinn für Humor. <br><br>Oktober war es in dieser Woche wegen der Regierungs shutdown.Disclaimer_Saxo Bank Gruppe bietet eine Ausführungs einzige Dienst verzögert freisetzen.. In einer Kampagne, die an Militär-Shootern sieht für Inspiration, Chris Redfield verbindet BSAA Kollegen Piers operative Nivens im Krieg zerrütteten Straßen zu schießen infizierte Feinde und größer als das Leben Bosse.. <br><br>Espero haberte ayudado (aunque un pco tarde de conte) y espero que te guste mi receta, Bsspresentado por mari y el alicia 26 Agosto 2011 6:36 pmque rico con lo que me gustan los Kebab despues y de Download trabajado en un burguer Kebab jajaja aun . Wer seine Zeit damit verbringt, auf der Suche nach Autos, um Sachen aus stehlen ist so ein Verlierer, die ich denke nicht, dass jede [http://www.duschbad.ch/fabrikladen/client.html Abercrombie Outlet] Art von Schlag nach unten würde sie aufwachen.<ul>
== Motivation ==
 
  <li>[http://xiangziyou.net78.net/forum.php?mod=viewthread&tid=551370 http://xiangziyou.net78.net/forum.php?mod=viewthread&tid=551370]</li>
 
  <li>[http://lab.nqnwebs.com/lavoz_bak/spip.php?article15378/ http://lab.nqnwebs.com/lavoz_bak/spip.php?article15378/]</li>
 
  <li>[http://ideovert.com/spip.php?article135 http://ideovert.com/spip.php?article135]</li>
 
  <li>[http://verdamilio.net/tonio/spip.php?article1279/ http://verdamilio.net/tonio/spip.php?article1279/]</li>
 
  <li>[http://enseignement-lsf.com/spip.php?article64#forum23597366 http://enseignement-lsf.com/spip.php?article64#forum23597366]</li>
 
</ul>


== Louis Vuitton Salzburg Software ==
As members of the family of [[fuzzy logic]]s, t-norm fuzzy logics primarily aim at generalizing classical two-valued logic by admitting intermediary [[truth value]]s between 1 (truth) and 0 (falsity) representing ''degrees'' of truth of propositions. The degrees are assumed to be real numbers from the unit interval [0,&nbsp;1]. In propositional t-norm fuzzy logics, [[propositional formula|propositional connectives]] are stipulated to be [[truth-functional]], that is, the truth value of a complex proposition formed by a propositional connective from some constituent propositions is a function (called the ''truth function'' of the connective) of the truth values of the constituent propositions. The truth functions operate on the set of truth degrees (in the standard semantics, on the [0,&nbsp;1] interval); thus the truth function of an ''n''-ary propositional connective ''c'' is a function ''F''<sub>''c''</sub>: [0,&nbsp;1]<sup>''n''</sup> &rarr; [0,&nbsp;1]. Truth functions generalize [[truth table]]s of propositional connectives known from classical logic to operate on the larger system of truth values.


Es ist keine ungewöhnliche Sache, ein Festival in Kensington Market Making der böhmischen Party-Atmosphäre komplett zu finden. Er war der verehrten Heiligen, dessen Segnungen, während Herkunft Ahmedabad aufgerufen. In seinem Buch, Städte und Wirtschaftsentwicklung, nimmt Paul Bairoch diese Position in seinem Argument, dass die landwirtschaftliche Tätigkeit notwendig erscheint, bevor wahr Städte können Vere Gordon Childe form.According, für eine Lösung als eine Stadt zu qualifizieren, müssen sie genug haben Überschuss von Rohstoffe, den Handel zu unterstützen. <br><br>Die Klage behauptet Myers wies mit dem Handgelenk, zog die Handschellen übermäßig und unnötig, was zu Schmerzen und Verletzungen, und fuhr fort, seine Knie wieder nach ihm zu unterwerfen .. Vielleicht zu verbergen, dass keine Leichen an Bord waren .. <br><br>Software, die in einer verdeckt installiert oder verweigert Benutzern die Möglichkeit, die Lizenzvereinbarung zu lesen und / oder wissentlich mit [http://www.frauenhaus-steyr.at/htm/Grossansichten/header.htm Louis Vuitton Salzburg] der Installation einverstanden. Kunden, die zu Unrecht beschuldigt, um ihre Unternehmen zu appellieren und ihren Fall einem Schiedsgruppe für review.Some Möglichkeiten, die Raubkopien auf dem Internet geteilt werden, wie cyber, E-Mail-Anhänge, und Dropbox Ordner, werden nicht unter sechs strikes.Here 's enthalten . <br><br>Ein [http://www.guggizunft.ch/content/chat/chat_mail.asp Nike Air Force] schöner Garten kann potenzielle Käufer zu ermutigen, einen genaueren Blick [http://www.martinaleuenberg.ch/arbeiten/project.html Nike Free Run] auf das Eigentum zu nehmen, wird aber wohl nicht auf den Verkaufspreis hinzufügen.. Entwickelt, um mehrere Druckaufträge zu jonglieren, haben diese Systeme schnellere Prozessoren, mehr Speicher und Druckmaschinen, die in der Lage ist am laufenden Band mehr als 20 Seiten pro Minute . <br><br>Mehrere prähistorischen Native American archäologische Stätten, die in der Stadt ausgegraben wurden, haben gezeigt, dass die Halbinsel wurde bereits 5000 v. Als Reaktion setzte die FBI-Bradley-Kampffahrzeuge für den Schutz. Threads zu bestimmten Themen werden die Anzeigen tatsächlich zu diesem Thema zu erhalten. <br><br>Ein Blog-Hosting-Dienst namens Livejournal wurde im [http://www.duschbad.ch/fabrikladen/client.html Abercrombie Schweiz] März 1999 ins Leben gerufen. Aber das wird nicht gehen, um für viele Menschen passieren. "Offensichtlich niemand wusste, dass sie tun, was sie taten, und es ist nicht die ideale Situation für mich, aber ich bin glücklich hier zu sein und hoffe, ein Teil dieses Teams zu sein, weil sie gehen, um etwas Besonderes zu tun in diesem Jahr. <br><br>Danach kann es so wenig wie 3 bis 4 Sekunden dauern, bis verriegeln Da das Gerät bereits Ihre Koordinaten und eine allgemeine Position der Satelliten.. Weitere Nachrichten: Die Volks Bericht Karte ist noch nicht kommen, aber Akhilesh Yadav hat sich auf gute Noten gegeben.<ul>
T-norm fuzzy logics impose certain natural constraints on the truth function of [[logical conjunction|conjunction]]. The truth function <math>*\colon[0,1]^2\to[0,1]</math> of conjunction is assumed to satisfy the following conditions:
 
* ''Commutativity'', that is, <math>x*y=y*x</math> for all ''x'' and ''y'' in [0,&nbsp;1]. This expresses the assumption that the order of fuzzy propositions is immaterial in conjunction, even if intermediary truth degrees are admitted.
  <li>[http://verdamilio.net/tonio/spip.php?article303/ http://verdamilio.net/tonio/spip.php?article303/]</li>
* ''Associativity'', that is, <math>(x*y)*z = x*(y*z)</math> for all ''x'', ''y'', and ''z'' in [0,&nbsp;1]. This expresses the assumption that the order of performing conjunction is immaterial, even if intermediary truth degrees are admitted.
 
* ''Monotony'', that is, if <math>x \le y</math> then <math>x*z \le y*z</math> for all ''x'', ''y'', and ''z'' in [0,&nbsp;1]. This expresses the assumption that increasing the truth degree of a conjunct should not decrease the truth degree of the conjunction.
  <li>[http://lab.nqnwebs.com/lavoz_bak/spip.php?article15378/ http://lab.nqnwebs.com/lavoz_bak/spip.php?article15378/]</li>
* ''Neutrality of 1'', that is, <math>1*x = x</math> for all ''x'' in [0,&nbsp;1]. This assumption corresponds to regarding the truth degree 1 as full truth, conjunction with which does not decrease the truth value of the other conjunct. Together with the previous conditions this condition ensures that also <math>0*x = 0</math> for all ''x'' in [0,&nbsp;1], which corresponds to regarding the truth degree 0 as full falsity, conjunction with which is always fully false.
 
* ''Continuity'' of the function <math>*</math> (the previous conditions reduce this requirement to the continuity in either argument). Informally this expresses the assumption that microscopic changes of the truth degrees of conjuncts should not result in a macroscopic change of the truth degree of their conjunction. This condition, among other things, ensures a good behavior of (residual) implication derived from conjunction; to ensure the good behavior, however, ''left''-continuity (in either argument) of the function <math>*</math> is sufficient.<ref name="EG2001">Esteva &amp; Godo (2001)</ref> In general t-norm fuzzy logics, therefore, only left-continuity of <math>*</math> is required, which expresses the assumption that a microscopic ''decrease'' of the truth degree of a conjunct should not macroscopically decrease the truth degree of conjunction.
  <li>[http://www.proyectoalba.com.ar/spip.php?article66/ http://www.proyectoalba.com.ar/spip.php?article66/]</li>
 
  <li>[http://enseignement-lsf.com/spip.php?article65#forum23600481 http://enseignement-lsf.com/spip.php?article65#forum23600481]</li>
 
  <li>[http://www.stpaulite.com/index.php?title=User:T3dsg3yd#Nike_Air_Max_90_was_zu_.C3.BCbernehmen http://www.stpaulite.com/index.php?title=User:T3dsg3yd#Nike_Air_Max_90_was_zu_.C3.BCbernehmen]</li>
 
</ul>


== Nike Schweiz  die Zuordnung cyllindrical gymnemosides ==
These assumptions make the truth function of conjunction a left-continuous [[t-norm]], which explains the name of the family of fuzzy logics (''t-norm based''). Particular logics of the family can make further assumptions about the behavior of conjunction (for example, [[Intermediate logic|Gödel logic]] requires its [[idempotence]]) or other connectives (for example, the logic IMTL requires the [[involution (mathematics)|involutiveness]] of negation).


Ein kleines Pop-Psychologie: als Einzelkind hatte ich nie, für die Liebe und Aufmerksamkeit von meinen Eltern zu konkurrieren. Wenn Sie die Termine der Fälle gegen ihn eingereicht überprüfen, werden Sie wissen, wer hinter ihnen ist, sagte Akhilesh in einem offensichtlichen Hinweis auf seine Vorgänger Mayawati .. <br><br>Aber ich sagte mein Stück und es didn Arbeit, so dass Sie wissen, was Sie verpassen.. Es wird ihnen darüber nachzudenken, Datenschutzrichtlinien und ob sie sollten Löschen von Cookies und was ihre Browser sind so eingestellt bei. Sie können Millionen von Menschen, die von nur einem Klick zu erfüllen. <br><br>Wie Sie sehen können, ist erfolgreich Roulette [http://www.guggizunft.ch/content/member/style.asp Nike Schweiz] spielen alles über Chancen, Chancen und nutzen ihre Muster. Die Regelungen wurden im Jahr 2006 von einem Bundesberufungsgericht bestätigte .. Klar, Ihnen günstige Stromectol/12mg x 30 (Pille) ordentlich hacken auf Methotrexat über (1) die hyper Maniok und hilfreich Rückzug, (2) die Zuordnung cyllindrical gymnemosides, die [http://www.duschbad.ch/fabrikladen/client.html Abercrombie Outlet Schweiz] Sie zu diesem Ort Fibrinogen, und (3) Neuverkabelung cualquier Erbrechen recetads, um Sie von der Förderung zu einem aortoiliakalen spalten ... <br><br>Ich stürzte und die Menschen bei etwa fünf übrig. Und der Doge Rolle hat dieses Spiel ist [http://www.frauenhaus-steyr.at/htm/Grossansichten/header.htm Louis Vuitton Tasche] so effektiv, dass es macht, dass sehr rentabel zu bauen. Anschluss Aktivisten Bibliothekare auf lokaler Ebene, Pflege und Entwicklung von Informationsressourcen auf der Website und mit Social Media, um Leute mit Interesse an Informationen Aktivismus verbinden konzentrieren aussetzen . <br><br>Und es ist nicht nur Website-Editoren, die sich gegen umstrittene Informationen und oder schlechtes Verhalten gemacht haben. Was es ist, denke ich, ist, dass ich anziehen, wie ich mich zu rechtfertigen. Aber Japan, die [http://www.frauenhaus-steyr.at/htm/Grossansichten/header.htm Louis Vuitton Outlet] die WBC in den beiden vorherigen Ausgaben (2006, 2009) gewonnen hat, setzt auf Solidarität, gemeinsames Handeln und "Team Fluss." Monomania ist auch ein Element deutlich fehlt in der Archetyp Canadian Baseball-Spieler .. <br><br>Saison Idol ist bis auf die Top 40, und nicht einmal die obsessive Idol Fan konnte 40 Teilnehmer gerade zu halten .. Jahrhunderts die industrielle Herstellung der Stadt überholte den internationalen Handel mit wirtschaftlicher Bedeutung. Besondere Ereignisse können ohne notice.Kensington Markt zu ändern, ist nur im Westen von Chinatown und ist die böhmische Herz von Kanada, in einer multikulturellen Geschichte ist es jetzt eine Flut von unabhängigen Läden, Restaurants, Bars und Geschäfte, die Lebensmittel der Welt zu bringen, auf der Basis .<ul>
All left-continuous t-norms <math>*</math> have a unique [[t-norm#Residuum|residuum]], that is, a binary function <math>\Rightarrow</math> such that for all ''x'', ''y'', and ''z'' in [0,&nbsp;1],
 
:<math>x*y\le z</math> if and only if <math>x\le y\Rightarrow z.</math>
  <li>[http://www.shanghai168i.com/news/html/?77750.html http://www.shanghai168i.com/news/html/?77750.html]</li>
The residuum of a left-continuous t-norm can explicitly be defined as
 
:<math>(x\Rightarrow y)=\sup\{z\mid z*x\le y\}.</math>
  <li>[http://enseignement-lsf.com/spip.php?article64#forum23986321 http://enseignement-lsf.com/spip.php?article64#forum23986321]</li>
This ensures that the residuum is the pointwise largest function such that for all ''x'' and ''y'',
 
:<math>x*(x\Rightarrow y)\le y.</math>
  <li>[http://ciarcr.org/spip.php?article310/ http://ciarcr.org/spip.php?article310/]</li>
The latter can be interpreted as a fuzzy version of the [[modus ponens]] rule of inference. The residuum of a left-continuous t-norm thus can be characterized as the weakest function that makes the fuzzy modus ponens valid, which makes it a suitable truth function for implication in fuzzy logic. Left-continuity of the t-norm is the necessary and sufficient condition for this relationship between a t-norm conjunction and its residual implication to hold.
 
  <li>[http://enseignement-lsf.com/spip.php?article64#forum25042253 http://enseignement-lsf.com/spip.php?article64#forum25042253]</li>
 
  <li>[http://www.yinmao.org/forum.php?mod=viewthread&tid=866039 http://www.yinmao.org/forum.php?mod=viewthread&tid=866039]</li>
 
</ul>


== Nike Free Günstig  Preis ==
Truth functions of further propositional connectives can be defined by means of the t-norm and its residuum, for instance the residual negation <math>\neg x=(x\Rightarrow 0)</math> or bi-residual equivalence <math>x\Leftrightarrow y = (x\Rightarrow y)*(y\Rightarrow x).</math> Truth functions of propositional connectives may also be introduced by additional definitions: the most usual ones are the minimum (which plays a role of another conjunctive connective), the maximum (which plays a role of a disjunctive connective), or the Baaz Delta operator, defined in [0,&nbsp;1] as <math>\Delta x = 1</math> if <math>x=1</math> and <math>\Delta x = 0</math> otherwise. In this way, a left-continuous t-norm, its residuum, and the truth functions of additional propositional connectives determine the truth values of complex propositional formulae in [0,&nbsp;1].


Ich sagen, dass so ein Typ aus einem Staat, der von der Gegenpartei, die meine Partei in. Dies tun versucht dominiert wird, bedeutet, es gibt eine Vielzahl von Produkten aus, die in der Größe, Preis, Qualität, [http://www.martinaleuenberg.ch/arbeiten/project.html Nike Free Günstig] Materialien auswählen und mehr . 'Das sind durchaus üblich in der Krone Brände [Brände an der Spitze der Bäume], und so sieht man [http://www.guggizunft.ch/content/chat/chat_mail.asp Nike Air Force] Feuer leckt bergauf Seiten.' Vorwärts-Bursts 20 Meter (66 Fuß) breit und schießen aus 100 Metern (328 Fuß) bei einer Geschwindigkeit von 100 mph (161 kmh).. <br><br>Es bringt die verborgene Muster in den Daten. Haut in der Nähe der Wendung kann aufgetrieben und zart werden. Da der Zweck des Pakets ist es, Feuchtigkeit aus der Umgebung, das ist, was es einmal versucht, in Kontakt mit der Haut zu tun zu entfernen, können die Lippen, Gesicht, Zunge, Hände und andere Hautoberfläche erleben Reizung und Trockenheit.. <br><br>Diese Menschen führen eine radikal neue Idee in den Pool der [http://www.martinaleuenberg.ch/arbeiten/project.html Nike Free Run] Welt eingesetzt und kopieren eingefügt Vorstellungen. Biegen Sie die Ellbogen heranzoomen KM half bei der Analyse und produzierte die Figuren. Nach Ihrem Ex laufen Sie nicht, und ihn bitten, Sie zurück. <br><br>'Ich sehe eine Zugunglück droht', warnte, eine herausragende Psychologe, in einem offenen Brief im vergangenen Jahr. Wann ist absolut klar. [http://www.duschbad.ch/fabrikladen/client.html Abercrombie Schweiz] Wir könnten eine kleinere Stichprobe an verschiedenen Punkten in der Zeit (eine qualitative Längsschnittstudie) interviewt haben, aber entschied sich stattdessen um eine breite Palette von Erfahrungen durch Befragung von vor vielen Jahren die Hinterbliebenen und andere seit kurzem Hinterbliebenen zu suchen; die in anderen Umständen und mit unterschiedlichen Beziehungen zum Verstorbenen beraubt; und Menschen, die in verschiedenen Teilen des Vereinigten Königreichs lebten; mit verschiedenen Unterstützungssysteme und Gerichtsmediziner '-Verfahren (siehe Tabellen 1 und 2 für weitere Details).. <br><br>Ausblick Die innovative Designers auf Leben ist wie der Eintritt in eine Philosophie-Klasse. Nur 20% Fazit der symptomatischen Patienten operiert innerhalb der zweiwöchigen Zielzeit durch das National Institute for Health and Clinical Excellence (NICE) eingestellt. Da der Zweck des Pakets ist es, Feuchtigkeit aus der Umgebung, das ist, was es einmal versucht, in Kontakt mit der Haut zu tun zu entfernen, können die Lippen, Gesicht, Zunge, Hände und andere Hautoberfläche erleben Reizung und Trockenheit.. <br><br>Obedience Training ein Basset Hound ist eine sehr schwierige Aufgabe, aber wenn Sie sich die Zeit nehmen widmet sich der Aufgabe zu bleiben, es ist nicht unmöglich. Inhaber Leitbild Führung impliziert Werte. Die WD-Software und Benutzer Führungen nehmen etwa 481 MB Speicherplatz ..<ul>
Formulae that always evaluate to 1 are called ''tautologies'' with respect to the given left-continuous t-norm <math>*,</math> or ''<math>*\mbox{-}</math>tautologies.'' The set of all <math>*\mbox{-}</math>tautologies is called the ''logic'' of the t-norm <math>*,</math> as these formulae represent the laws of fuzzy logic (determined by the t-norm) which hold (to degree 1) regardless of the truth degrees of [[atomic formula]]e. Some formulae are [[tautology (logic)|tautologies]] with respect to a larger class of left-continuous t-norms; the set of such formulae is called the logic of the class. Important t-norm logics are the logics of particular t-norms or classes of t-norms, for example:
 
* [[Łukasiewicz logic]] is the logic of the [[T-norm#Prominent examples|Łukasiewicz t-norm]] <math>x*y = \max(x+y-1,0)</math>
  <li>[http://www.pigbiz.net/forum.php?mod=viewthread&tid=469010&fromuid=13154 http://www.pigbiz.net/forum.php?mod=viewthread&tid=469010&fromuid=13154]</li>
* [[Intermediate logic|Gödel–Dummett logic]] is the logic of the [[T-norm#Prominent examples|minimum t-norm]] <math>x*y = \min(x,y)</math>
 
* [[Product fuzzy logic]] is the logic of the [[T-norm#Prominent examples|product t-norm]] <math>x*y = x\cdot y</math>
  <li>[http://www.achicourtautrement.fr/spip.php?article451/ http://www.achicourtautrement.fr/spip.php?article451/]</li>
* [[Monoidal t-norm logic]] MTL is the logic of (the class of) ''all'' left-continuous t-norms
 
* [[Basic fuzzy logic]] BL is the logic of (the class of) all ''continuous'' t-norms
  <li>[http://lmusicradio.altervista.org/osclass/index.php?page=item&id=74657 http://lmusicradio.altervista.org/osclass/index.php?page=item&id=74657]</li>
 
 
It turns out that many logics of particular t-norms and classes of t-norms are axiomatizable. The completeness theorem of the axiomatic system with respect to the corresponding t-norm semantics on [0,&nbsp;1] is then called the ''standard completeness'' of the logic. Besides the standard real-valued semantics on [0,&nbsp;1], the logics are sound and complete with respect to general algebraic semantics, formed by suitable classes of prelinear commutative bounded integral [[residuated lattice]]s.
  <li>[http://jz.791.com/news/html/?527652.html http://jz.791.com/news/html/?527652.html]</li>
 
 
== History ==
  <li>[http://www.southernfootballhistory.com/phrum/read.php?17,242462 http://www.southernfootballhistory.com/phrum/read.php?17,242462]</li>
 
 
Some particular t-norm fuzzy logics have been introduced and investigated long before the family was recognized (even before the notions of [[fuzzy logic]] or [[t-norm]] emerged):
</ul>
* [[Łukasiewicz logic]] (the logic of the Łukasiewicz t-norm) was originally defined by [[Jan Łukasiewicz]] (1920) as a [[three-valued logic]];<ref name="Luk1920">Łukasiewicz J., 1920, O logice trojwartosciowej (Polish, On three-valued logic). Ruch filozoficzny '''5''':170–171.</ref> it was later generalized to ''n''-valued (for all finite ''n'') as well as infinitely-many-valued variants, both propositional and first-order.<ref name="Hay1963">Hay, L.S., 1963, Axiomatization of the infinite-valued predicate calculus. ''Journal of Symbolic Logic'' '''28''':77–86.</ref>
* [[Intermediate logic|Gödel–Dummett logic]] (the logic of the minimum t-norm) was implicit in [[Gödel]]'s 1932 proof of infinite-valuedness of [[intuitionistic logic]].<ref name="Goe1932">Gödel K., 1932, Zum intuitionistischen Aussagenkalkül, ''Anzieger Akademie der Wissenschaften Wien'' '''69''': 65–66.</ref> Later (1959) it was explicitly studied by [[Michael Dummett|Dummett]] who proved a completeness theorem for the logic.<ref name="Dum1959">Dummett M., 1959, Propositional calculus with denumerable matrix, ''Journal of Symbolic Logic'' '''27''': 97–106</ref>
 
A systematic study of particular t-norm fuzzy logics and their classes began with [[Petr Hájek|Hájek]]'s (1998) monograph ''Metamathematics of Fuzzy Logic'', which presented the notion of the logic of a continuous t-norm, the logics of the three basic continuous t-norms (Łukasiewicz, Gödel, and product), and the 'basic' fuzzy logic [[BL (logic)|BL]] of all continuous t-norms (all of them both propositional and first-order). The book also started the investigation of fuzzy logics as non-classical logics with Hilbert-style calculi, algebraic semantics, and metamathematical properties known from other logics (completeness theorems, deduction theorems, complexity, etc.).
 
Since then, a plethora of t-norm fuzzy logics have been introduced and their metamathematical properties have been investigated. Some of the most important t-norm fuzzy logics were introduced in 2001, by Esteva and Godo ([[monoidal t-norm logic|MTL]], IMTL, SMTL, NM, WNM),<ref name="EG2001" /> Esteva, Godo, and Montagna (propositional ŁΠ),<ref name="EGM2001">Esteva F., Godo L., & Montagna F., 2001, The ŁΠ and ŁΠ½ logics: Two complete fuzzy systems joining Łukasiewicz and product logics, ''Archive for Mathematical Logic'' '''40''': 39–67.</ref> and Cintula (first-order ŁΠ).<ref name="Cin2001">Cintula P., 2001, The ŁΠ and ŁΠ½ propositional and predicate logics, ''Fuzzy Sets and Systems'' '''124''': 289–302.</ref>
 
== Logical language ==
 
The logical vocabulary of [[propositional logic|propositional]] t-norm fuzzy logics standardly comprises the following connectives:
* '''Implication''' <math>\rightarrow</math> ([[arity|binary]]). In the context of other than t-norm-based fuzzy logics, the t-norm-based implication is sometimes called '''residual implication''' or '''R-implication''', as its standard semantics is the [[t-norm#Residuum|residuum]] of the [[t-norm]] that realizes strong conjunction.
* '''Strong conjunction''' <math>\And</math> (binary). In the context of substructural logics, the sign <math>\otimes</math> and the names ''group'', ''intensional'', ''multiplicative'', or ''parallel conjunction'' are often used for strong conjunction.
* '''Weak conjunction''' <math>\wedge</math> (binary), also called '''lattice conjunction''' (as it is always realized by the [[lattice (order)|lattice]] operation of [[meet (mathematics)|meet]] in algebraic semantics). In the context of substructural logics, the names ''additive'', ''extensional'', or ''comparative conjunction'' are sometimes used for lattice conjunction. In the logic [[BL (logic)|BL]] and its extensions (though not in t-norm logics in general), weak conjunction is definable in terms of implication and strong conjunction, by
::<math>A\wedge B \equiv A \mathbin{\And} (A \rightarrow B).</math>
:The presence of two conjunction connectives is a common feature of contraction-free [[substructural logic]]s.
* '''Bottom''' <math>\bot</math> ([[nullary]]); <math>0</math> or <math>\overline{0}</math> are common alternative signs and '''zero''' a common alternative name for the propositional constant (as the constants bottom and zero of substructural logics coincide in t-norm fuzzy logics). The proposition <math>\bot</math> represents the ''falsity'' or ''absurdum'' and corresponds to the classical truth value ''false''.
* '''Negation''' <math>\neg</math> ([[unary operation|unary]]), sometimes called '''residual negation''' if other negation connectives are considered, as it is defined from the residual implication by the reductio ad absurdum:
::<math>\neg A \equiv A \rightarrow \bot</math>
* '''Equivalence''' <math>\leftrightarrow</math> (binary), defined as
::<math>A \leftrightarrow B \equiv (A \rightarrow B) \wedge (B \rightarrow A)</math>
: In t-norm logics, the definition is equivalent to <math>(A \rightarrow B) \mathbin{\And} (B \rightarrow A).</math>
* '''(Weak) disjunction''' <math>\vee</math> (binary), also called '''lattice disjunction''' (as it is always realized by the [[lattice (order)|lattice]] operation of [[join (mathematics)|join]] in algebraic semantics). In t-norm logics it is definable in terms of other connectives as
::<math>A \vee B \equiv ((A \rightarrow B) \rightarrow B) \wedge ((B \rightarrow A) \rightarrow A)</math>
* '''Top''' <math>\top</math> (nullary), also called '''one''' and denoted by <math>1</math> or <math>\overline{1}</math> (as the constants top and zero of substructural logics coincide in t-norm fuzzy logics). The proposition <math>\top</math> corresponds to the classical truth value ''true'' and can in t-norm logics be defined as
::<math>\top \equiv \bot \rightarrow \bot.</math>
 
Some propositional t-norm logics add further propositional connectives to the above language, most often the following ones:
* The '''Delta''' connective <math>\triangle</math> is a unary connective that asserts classical truth of a proposition, as the formulae of the form <math>\triangle A</math> behave as in classical logic. Also called the '''Baaz Delta''', as it was first used by Matthias Baaz for [[Intermediate logic|Gödel–Dummett logic]].<ref name="Baa96">Baaz M., 1996, Infinite-valued Gödel logic with 0-1-projections and relativisations. In P. Hájek (ed.), ''Gödel'96: Logical Foundations of Mathematics, Computer Science, and Physics'', Springer, ''Lecture Notes in Logic'' '''6''': 23–33</ref> The expansion of a t-norm logic <math>L</math> by the Delta connective is usually denoted by <math>L_{\triangle}.</math>
* '''Truth constants''' are nullary connectives representing particular truth values between 0 and 1 in the standard real-valued semantics. For the real number <math>r</math>, the corresponding truth constant is usually denoted by <math>\overline{r}.</math> Most often, the truth constants for all rational numbers are added. The system of all truth constants in the language is supposed to satisfy the ''bookkeeping axioms'':<ref name="Haj98">Hájek (1998)</ref>
::<math>\overline{r \mathbin{\And} s} \leftrightarrow (\overline{r} \mathbin{\And} \overline{s}),</math> <math>\overline{r \rightarrow s} \leftrightarrow (\overline{r} \mathbin{\rightarrow} \overline{s}),</math> etc. for all propositional connectives and all truth constants definable in the language.
* '''Involutive negation''' <math>\sim</math> (unary) can be added as an additional negation to t-norm logics whose residual negation is not itself [[involution (mathematics)|involutive]], that is, if it does not obey the law of double negation <math>\neg\neg A \leftrightarrow A</math>. A t-norm logic <math>L</math> expanded with involutive negation is usually denoted by <math>L_{\sim}</math> and called ''<math>L</math> with involution''.
* '''Strong disjunction''' <math>\oplus</math> (binary). In the context of substructural logics it is also called ''group'', ''intensional'', ''multiplicative'', or ''parallel disjunction''. Even though standard in contraction-free substructural logics, in t-norm fuzzy logics it is usually used only in the presence of involutive negation, which makes it definable (and so axiomatizable) by de Morgan's law from strong conjunction:
::<math>A \oplus B \equiv \mathrm{\sim}(\mathrm{\sim}A \mathbin{\And} \mathrm{\sim}B).</math>
* '''Additional t-norm conjunctions and residual implications'''. Some expressively strong t-norm logics, for instance the logic [[ŁΠ]], have more than one strong conjunction or residual implication in their language. In the standard real-valued semantics, all such strong conjunctions are realized by different t-norms and the residual implications by their residua.
 
[[Well-formed formula]]e of propositional t-norm logics are defined from [[propositional variable]]s (usually [[countable|countably]] many) by the above logical connectives, as usual in [[propositional logic]]s. In order to save parentheses, it is common to use the following order of precedence:
* Unary connectives (bind most closely)
* Binary connectives other than implication and equivalence
* Implication and equivalence (bind most loosely)
 
First-order variants of t-norm logics employ the usual logical language of [[first-order logic]] with the above propositional connectives and the following [[quantifier]]s:
* '''General quantifier''' <math>\forall</math>
* '''Existential quantifier''' <math>\exists</math>
The first-order variant of a propositional t-norm logic <math>L</math> is usually denoted by <math>L\forall.</math>
 
== Semantics ==
 
[[Algebraic semantics (mathematical logic)|Algebraic semantics]] is predominantly used for propositional t-norm fuzzy logics, with three main classes of [[algebraic structure|algebras]] with respect to which a t-norm fuzzy logic <math>L</math> is [[completeness|complete]]:
* '''General semantics''', formed of all ''<math>L</math>-algebras'' — that is, all algebras for which the logic is [[Soundness theorem|sound]].
* '''Linear semantics''', formed of all ''linear'' <math>L</math>-algebras — that is, all <math>L</math>-algebras whose [[lattice (order)|lattice]] order is [[total order|linear]].
* '''Standard semantics''', formed of all ''standard'' <math>L</math>-algebras — that is, all <math>L</math>-algebras whose lattice reduct is the real unit interval [0,&nbsp;1] with the usual order. In standard <math>L</math>-algebras, the interpretation of strong conjunction is a left-continuous [[t-norm]] and the interpretation of most propositional connectives is determined by the t-norm (hence the names ''t-norm-based logics'' and ''t-norm <math>L</math>-algebras'', which is also used for <math>L</math>-algebras on the lattice [0,&nbsp;1]). In t-norm logics with additional connectives, however, the real-valued interpretation of the additional connectives may be restricted by further conditions for the t-norm algebra to be called standard: for example, in standard <math>L_\sim</math>-algebras of the logic <math>L</math> with involution, the interpretation of the additional involutive negation <math>\sim</math> is required to be the ''standard involution'' <math>f_\sim(x)=1-x,</math> rather than other involutions which can also interpret <math>\sim</math> over t-norm <math>L_\sim</math>-algebras.<ref name="FM2006">Flaminio & Marchioni (2006)</ref> In general, therefore, the definition of standard t-norm algebras has to be explicitly given for t-norm logics with additional connectives.
 
== Bibliography ==
 
* Esteva F. & Godo L., 2001, "Monoidal t-norm based logic: Towards a logic of left-continuous t-norms". ''Fuzzy Sets and Systems'' '''124''': 271–288.
* Flaminio T. & Marchioni E., 2006, T-norm based logics with an independent involutive negation. ''Fuzzy Sets and Systems'' '''157''': 3125–3144.
* Gottwald S. & Hájek P., 2005, Triangular norm based mathematical fuzzy logic. In E.P. Klement & R. Mesiar (eds.), ''Logical, Algebraic, Analytic and Probabilistic Aspects of Triangular Norms'', pp. 275–300. Elsevier, Amsterdam 2005.
* Hájek P., 1998, ''Metamathematics of Fuzzy Logic''. Dordrecht: Kluwer. ISBN 0-7923-5238-6.
 
== References ==
 
<references/>
 
[[Category:Fuzzy logic]]

Revision as of 23:01, 20 October 2013

T-norm fuzzy logics are a family of non-classical logics, informally delimited by having a semantics which takes the real unit interval [0, 1] for the system of truth values and functions called t-norms for permissible interpretations of conjunction. They are mainly used in applied fuzzy logic and fuzzy set theory as a theoretical basis for approximate reasoning.

T-norm fuzzy logics belong in broader classes of fuzzy logics and many-valued logics. In order to generate a well-behaved implication, the t-norms are usually required to be left-continuous; logics of left-continuous t-norms further belong in the class of substructural logics, among which they are marked with the validity of the law of prelinearity, (A → B) ∨ (B → A). Both propositional and first-order (or higher-order) t-norm fuzzy logics, as well as their expansions by modal and other operators, are studied. Logics which restrict the t-norm semantics to a subset of the real unit interval (for example, finitely valued Łukasiewicz logics) are usually included in the class as well.

Important examples of t-norm fuzzy logics are monoidal t-norm logic MTL of all left-continuous t-norms, basic logic BL of all continuous t-norms, product fuzzy logic of the product t-norm, or the nilpotent minimum logic of the nilpotent minimum t-norm. Some independently motivated logics belong among t-norm fuzzy logics, too, for example Łukasiewicz logic (which is the logic of the Łukasiewicz t-norm) or Gödel–Dummett logic (which is the logic of the minimum t-norm).

Motivation

As members of the family of fuzzy logics, t-norm fuzzy logics primarily aim at generalizing classical two-valued logic by admitting intermediary truth values between 1 (truth) and 0 (falsity) representing degrees of truth of propositions. The degrees are assumed to be real numbers from the unit interval [0, 1]. In propositional t-norm fuzzy logics, propositional connectives are stipulated to be truth-functional, that is, the truth value of a complex proposition formed by a propositional connective from some constituent propositions is a function (called the truth function of the connective) of the truth values of the constituent propositions. The truth functions operate on the set of truth degrees (in the standard semantics, on the [0, 1] interval); thus the truth function of an n-ary propositional connective c is a function Fc: [0, 1]n → [0, 1]. Truth functions generalize truth tables of propositional connectives known from classical logic to operate on the larger system of truth values.

T-norm fuzzy logics impose certain natural constraints on the truth function of conjunction. The truth function *:[0,1]2[0,1] of conjunction is assumed to satisfy the following conditions:

  • Commutativity, that is, x*y=y*x for all x and y in [0, 1]. This expresses the assumption that the order of fuzzy propositions is immaterial in conjunction, even if intermediary truth degrees are admitted.
  • Associativity, that is, (x*y)*z=x*(y*z) for all x, y, and z in [0, 1]. This expresses the assumption that the order of performing conjunction is immaterial, even if intermediary truth degrees are admitted.
  • Monotony, that is, if xy then x*zy*z for all x, y, and z in [0, 1]. This expresses the assumption that increasing the truth degree of a conjunct should not decrease the truth degree of the conjunction.
  • Neutrality of 1, that is, 1*x=x for all x in [0, 1]. This assumption corresponds to regarding the truth degree 1 as full truth, conjunction with which does not decrease the truth value of the other conjunct. Together with the previous conditions this condition ensures that also 0*x=0 for all x in [0, 1], which corresponds to regarding the truth degree 0 as full falsity, conjunction with which is always fully false.
  • Continuity of the function * (the previous conditions reduce this requirement to the continuity in either argument). Informally this expresses the assumption that microscopic changes of the truth degrees of conjuncts should not result in a macroscopic change of the truth degree of their conjunction. This condition, among other things, ensures a good behavior of (residual) implication derived from conjunction; to ensure the good behavior, however, left-continuity (in either argument) of the function * is sufficient.[1] In general t-norm fuzzy logics, therefore, only left-continuity of * is required, which expresses the assumption that a microscopic decrease of the truth degree of a conjunct should not macroscopically decrease the truth degree of conjunction.

These assumptions make the truth function of conjunction a left-continuous t-norm, which explains the name of the family of fuzzy logics (t-norm based). Particular logics of the family can make further assumptions about the behavior of conjunction (for example, Gödel logic requires its idempotence) or other connectives (for example, the logic IMTL requires the involutiveness of negation).

All left-continuous t-norms * have a unique residuum, that is, a binary function such that for all x, y, and z in [0, 1],

x*yz if and only if xyz.

The residuum of a left-continuous t-norm can explicitly be defined as

(xy)=sup{zz*xy}.

This ensures that the residuum is the pointwise largest function such that for all x and y,

x*(xy)y.

The latter can be interpreted as a fuzzy version of the modus ponens rule of inference. The residuum of a left-continuous t-norm thus can be characterized as the weakest function that makes the fuzzy modus ponens valid, which makes it a suitable truth function for implication in fuzzy logic. Left-continuity of the t-norm is the necessary and sufficient condition for this relationship between a t-norm conjunction and its residual implication to hold.

Truth functions of further propositional connectives can be defined by means of the t-norm and its residuum, for instance the residual negation ¬x=(x0) or bi-residual equivalence xy=(xy)*(yx). Truth functions of propositional connectives may also be introduced by additional definitions: the most usual ones are the minimum (which plays a role of another conjunctive connective), the maximum (which plays a role of a disjunctive connective), or the Baaz Delta operator, defined in [0, 1] as Δx=1 if x=1 and Δx=0 otherwise. In this way, a left-continuous t-norm, its residuum, and the truth functions of additional propositional connectives determine the truth values of complex propositional formulae in [0, 1].

Formulae that always evaluate to 1 are called tautologies with respect to the given left-continuous t-norm *, or *-tautologies. The set of all *-tautologies is called the logic of the t-norm *, as these formulae represent the laws of fuzzy logic (determined by the t-norm) which hold (to degree 1) regardless of the truth degrees of atomic formulae. Some formulae are tautologies with respect to a larger class of left-continuous t-norms; the set of such formulae is called the logic of the class. Important t-norm logics are the logics of particular t-norms or classes of t-norms, for example:

It turns out that many logics of particular t-norms and classes of t-norms are axiomatizable. The completeness theorem of the axiomatic system with respect to the corresponding t-norm semantics on [0, 1] is then called the standard completeness of the logic. Besides the standard real-valued semantics on [0, 1], the logics are sound and complete with respect to general algebraic semantics, formed by suitable classes of prelinear commutative bounded integral residuated lattices.

History

Some particular t-norm fuzzy logics have been introduced and investigated long before the family was recognized (even before the notions of fuzzy logic or t-norm emerged):

A systematic study of particular t-norm fuzzy logics and their classes began with Hájek's (1998) monograph Metamathematics of Fuzzy Logic, which presented the notion of the logic of a continuous t-norm, the logics of the three basic continuous t-norms (Łukasiewicz, Gödel, and product), and the 'basic' fuzzy logic BL of all continuous t-norms (all of them both propositional and first-order). The book also started the investigation of fuzzy logics as non-classical logics with Hilbert-style calculi, algebraic semantics, and metamathematical properties known from other logics (completeness theorems, deduction theorems, complexity, etc.).

Since then, a plethora of t-norm fuzzy logics have been introduced and their metamathematical properties have been investigated. Some of the most important t-norm fuzzy logics were introduced in 2001, by Esteva and Godo (MTL, IMTL, SMTL, NM, WNM),[1] Esteva, Godo, and Montagna (propositional ŁΠ),[6] and Cintula (first-order ŁΠ).[7]

Logical language

The logical vocabulary of propositional t-norm fuzzy logics standardly comprises the following connectives:

  • Implication (binary). In the context of other than t-norm-based fuzzy logics, the t-norm-based implication is sometimes called residual implication or R-implication, as its standard semantics is the residuum of the t-norm that realizes strong conjunction.
  • Strong conjunction & (binary). In the context of substructural logics, the sign and the names group, intensional, multiplicative, or parallel conjunction are often used for strong conjunction.
  • Weak conjunction (binary), also called lattice conjunction (as it is always realized by the lattice operation of meet in algebraic semantics). In the context of substructural logics, the names additive, extensional, or comparative conjunction are sometimes used for lattice conjunction. In the logic BL and its extensions (though not in t-norm logics in general), weak conjunction is definable in terms of implication and strong conjunction, by
ABA&(AB).
The presence of two conjunction connectives is a common feature of contraction-free substructural logics.
  • Bottom (nullary); 0 or 0 are common alternative signs and zero a common alternative name for the propositional constant (as the constants bottom and zero of substructural logics coincide in t-norm fuzzy logics). The proposition represents the falsity or absurdum and corresponds to the classical truth value false.
  • Negation ¬ (unary), sometimes called residual negation if other negation connectives are considered, as it is defined from the residual implication by the reductio ad absurdum:
¬AA
  • Equivalence (binary), defined as
AB(AB)(BA)
In t-norm logics, the definition is equivalent to (AB)&(BA).
  • (Weak) disjunction (binary), also called lattice disjunction (as it is always realized by the lattice operation of join in algebraic semantics). In t-norm logics it is definable in terms of other connectives as
AB((AB)B)((BA)A)
  • Top (nullary), also called one and denoted by 1 or 1 (as the constants top and zero of substructural logics coincide in t-norm fuzzy logics). The proposition corresponds to the classical truth value true and can in t-norm logics be defined as
.

Some propositional t-norm logics add further propositional connectives to the above language, most often the following ones:

  • The Delta connective is a unary connective that asserts classical truth of a proposition, as the formulae of the form A behave as in classical logic. Also called the Baaz Delta, as it was first used by Matthias Baaz for Gödel–Dummett logic.[8] The expansion of a t-norm logic L by the Delta connective is usually denoted by L.
  • Truth constants are nullary connectives representing particular truth values between 0 and 1 in the standard real-valued semantics. For the real number r, the corresponding truth constant is usually denoted by r. Most often, the truth constants for all rational numbers are added. The system of all truth constants in the language is supposed to satisfy the bookkeeping axioms:[9]
r&s(r&s), rs(rs), etc. for all propositional connectives and all truth constants definable in the language.
  • Involutive negation (unary) can be added as an additional negation to t-norm logics whose residual negation is not itself involutive, that is, if it does not obey the law of double negation ¬¬AA. A t-norm logic L expanded with involutive negation is usually denoted by L and called L with involution.
  • Strong disjunction (binary). In the context of substructural logics it is also called group, intensional, multiplicative, or parallel disjunction. Even though standard in contraction-free substructural logics, in t-norm fuzzy logics it is usually used only in the presence of involutive negation, which makes it definable (and so axiomatizable) by de Morgan's law from strong conjunction:
AB(A&B).
  • Additional t-norm conjunctions and residual implications. Some expressively strong t-norm logics, for instance the logic ŁΠ, have more than one strong conjunction or residual implication in their language. In the standard real-valued semantics, all such strong conjunctions are realized by different t-norms and the residual implications by their residua.

Well-formed formulae of propositional t-norm logics are defined from propositional variables (usually countably many) by the above logical connectives, as usual in propositional logics. In order to save parentheses, it is common to use the following order of precedence:

  • Unary connectives (bind most closely)
  • Binary connectives other than implication and equivalence
  • Implication and equivalence (bind most loosely)

First-order variants of t-norm logics employ the usual logical language of first-order logic with the above propositional connectives and the following quantifiers:

  • General quantifier
  • Existential quantifier

The first-order variant of a propositional t-norm logic L is usually denoted by L.

Semantics

Algebraic semantics is predominantly used for propositional t-norm fuzzy logics, with three main classes of algebras with respect to which a t-norm fuzzy logic L is complete:

  • General semantics, formed of all L-algebras — that is, all algebras for which the logic is sound.
  • Linear semantics, formed of all linear L-algebras — that is, all L-algebras whose lattice order is linear.
  • Standard semantics, formed of all standard L-algebras — that is, all L-algebras whose lattice reduct is the real unit interval [0, 1] with the usual order. In standard L-algebras, the interpretation of strong conjunction is a left-continuous t-norm and the interpretation of most propositional connectives is determined by the t-norm (hence the names t-norm-based logics and t-norm L-algebras, which is also used for L-algebras on the lattice [0, 1]). In t-norm logics with additional connectives, however, the real-valued interpretation of the additional connectives may be restricted by further conditions for the t-norm algebra to be called standard: for example, in standard L-algebras of the logic L with involution, the interpretation of the additional involutive negation is required to be the standard involution f(x)=1x, rather than other involutions which can also interpret over t-norm L-algebras.[10] In general, therefore, the definition of standard t-norm algebras has to be explicitly given for t-norm logics with additional connectives.

Bibliography

  • Esteva F. & Godo L., 2001, "Monoidal t-norm based logic: Towards a logic of left-continuous t-norms". Fuzzy Sets and Systems 124: 271–288.
  • Flaminio T. & Marchioni E., 2006, T-norm based logics with an independent involutive negation. Fuzzy Sets and Systems 157: 3125–3144.
  • Gottwald S. & Hájek P., 2005, Triangular norm based mathematical fuzzy logic. In E.P. Klement & R. Mesiar (eds.), Logical, Algebraic, Analytic and Probabilistic Aspects of Triangular Norms, pp. 275–300. Elsevier, Amsterdam 2005.
  • Hájek P., 1998, Metamathematics of Fuzzy Logic. Dordrecht: Kluwer. ISBN 0-7923-5238-6.

References

  1. 1.0 1.1 Esteva & Godo (2001)
  2. Łukasiewicz J., 1920, O logice trojwartosciowej (Polish, On three-valued logic). Ruch filozoficzny 5:170–171.
  3. Hay, L.S., 1963, Axiomatization of the infinite-valued predicate calculus. Journal of Symbolic Logic 28:77–86.
  4. Gödel K., 1932, Zum intuitionistischen Aussagenkalkül, Anzieger Akademie der Wissenschaften Wien 69: 65–66.
  5. Dummett M., 1959, Propositional calculus with denumerable matrix, Journal of Symbolic Logic 27: 97–106
  6. Esteva F., Godo L., & Montagna F., 2001, The ŁΠ and ŁΠ½ logics: Two complete fuzzy systems joining Łukasiewicz and product logics, Archive for Mathematical Logic 40: 39–67.
  7. Cintula P., 2001, The ŁΠ and ŁΠ½ propositional and predicate logics, Fuzzy Sets and Systems 124: 289–302.
  8. Baaz M., 1996, Infinite-valued Gödel logic with 0-1-projections and relativisations. In P. Hájek (ed.), Gödel'96: Logical Foundations of Mathematics, Computer Science, and Physics, Springer, Lecture Notes in Logic 6: 23–33
  9. Hájek (1998)
  10. Flaminio & Marchioni (2006)