Josephson energy: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
en>Dr.K. ce |
||
Line 1: | Line 1: | ||
In [[mathematics]], a '''quasi-Frobenius Lie algebra''' | |||
:<math>(\mathfrak{g},[\,\,\,,\,\,\,],\beta )</math> | |||
over a field <math>k</math> is a [[Lie algebra]] | |||
:<math>(\mathfrak{g},[\,\,\,,\,\,\,] )</math> | |||
equipped with a [[nondegenerate]] [[skew-symmetric]] [[bilinear form]] | |||
:<math>\beta : \mathfrak{g}\times\mathfrak{g}\to k</math>, which is a Lie algebra 2-[[cocycle]] of <math>\mathfrak{g}</math> with values in <math>k</math>. In other words, | |||
::<math> \beta \left(\left[X,Y\right],Z\right)+\beta \left(\left[Z,X\right],Y\right)+\beta \left(\left[Y,Z\right],X\right)=0 </math> | |||
for all <math>X</math>, <math>Y</math>, <math>Z</math> in <math>\mathfrak{g}</math>. | |||
If <math>\beta</math> is a coboundary, which means that there exists a linear form <math>f : \mathfrak{g}\to k</math> such that | |||
:<math>\beta(X,Y)=f(\left[X,Y\right]),</math> | |||
then | |||
:<math>(\mathfrak{g},[\,\,\,,\,\,\,],\beta )</math> | |||
is called a '''Frobenius Lie algebra'''. | |||
== Equivalence with pre-Lie algebras with nondegenerate invariant skew-symmetric bilinear form == | |||
If <math>(\mathfrak{g},[\,\,\,,\,\,\,],\beta )</math> is a quasi-Frobenius Lie algebra, one can define on <math>\mathfrak{g}</math> another bilinear product <math>\triangleleft</math> by the formula | |||
::<math> \beta \left(\left[X,Y\right],Z\right)=\beta \left(Z \triangleleft Y,X \right) </math>. | |||
Then one has | |||
<math>\left[X,Y\right]=X \triangleleft Y-Y \triangleleft X</math> and | |||
:<math>(\mathfrak{g}, \triangleleft)</math> | |||
is a [[pre-Lie algebra]]. | |||
==See also== | |||
*[[Lie coalgebra]] | |||
*[[Lie bialgebra]] | |||
*[[Lie algebra cohomology]] | |||
*[[Frobenius algebra]] | |||
*[[Quasi-Frobenius ring]] | |||
==References== | |||
* Jacobson, Nathan, ''Lie algebras'', Republication of the 1962 original. Dover Publications, Inc., New York, 1979. ISBN 0-486-63832-4 | |||
* Vyjayanthi Chari and Andrew Pressley, ''A Guide to Quantum Groups'', (1994), Cambridge University Press, Cambridge ISBN 0-521-55884-0. | |||
[[Category:Lie algebras]] | |||
[[Category:Coalgebras]] | |||
[[Category:Symplectic topology]] |
Revision as of 00:19, 2 August 2013
In mathematics, a quasi-Frobenius Lie algebra
over a field is a Lie algebra
equipped with a nondegenerate skew-symmetric bilinear form
- , which is a Lie algebra 2-cocycle of with values in . In other words,
If is a coboundary, which means that there exists a linear form such that
then
is called a Frobenius Lie algebra.
Equivalence with pre-Lie algebras with nondegenerate invariant skew-symmetric bilinear form
If is a quasi-Frobenius Lie algebra, one can define on another bilinear product by the formula
is a pre-Lie algebra.
See also
References
- Jacobson, Nathan, Lie algebras, Republication of the 1962 original. Dover Publications, Inc., New York, 1979. ISBN 0-486-63832-4
- Vyjayanthi Chari and Andrew Pressley, A Guide to Quantum Groups, (1994), Cambridge University Press, Cambridge ISBN 0-521-55884-0.