Inverse Gaussian distribution: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
en>Braincricket
Typo fixing, typos fixed: Schrodinger → Schrödinger using AWB (8062)
 
en>BeyondNormality
Line 1: Line 1:
Andrew Simcox is the title his parents gave him and he totally loves this title. Distributing manufacturing is how he tends to make a living. Some time ago he selected to live in North Carolina and he doesn't plan on changing it. What me and my family adore is performing ballet but I've been using on new issues lately.<br><br>my homepage - tarot card readings ([http://isaworld.pe.kr/?document_srl=392088 http://isaworld.pe.kr/])
'''Heat of formation group additivity''' methods in [[thermochemistry]] enable the calculation and prediction of [[heat of formation]] of [[organic compound]]s based on [[Chemical additive|additivity]]. This method was pioneered by S. W. Benson.<ref>''Estimation of heats of formation of organic compounds by additivity methods'' N. Cohen, S. W. Benson [[Chem. Rev.]]; '''1993'''; 93(7); 2419-2438 [http://pubs.acs.org/cgi-bin/abstract.cgi/chreay/1993/93/i07/f-pdf/f_cr00023a005.pdf Abstract]</ref>
 
== Benson model ==
{{Main|Benson group increment theory}}
Starting with simple linear and branched [[alkane]]s and [[alkene]]s the method works by collecting a large number of experimental heat of formation data (see: [[Standard enthalpy change of formation (data table)|Heat of Formation table]]) and then divide each molecule up into distinct groups each consisting of a central atom with multiple ligands:
 
: X-(A)i(B)j(C)k(D)l
 
To each group is then assigned an empirical incremental value which is independent on its position inside the molecule and independent of the nature of its neighbors:
 
* P primary C-(C)(H)3 '''-10.00'''
* S secondary C-(C)2(H)2 '''-5.00'''
* T tertiary C-(C)3(H) '''-2.40'''
* Q quaternary C-(C)4 '''-0.10'''
* [[Gauche (stereochemistry)|gauche]] correction '''+0.80'''
* 1,5 [[pentane interference]] correction '''+1.60 '''
: in kcal/mol and 298 K
 
The following example illustrates how these values can be derived.  
 
The experimental heat of formation of [[ethane]] is -20.03 kcal/mol and ethane consists of 2 P groups. Likewise [[propane]] (-25.02 kcal/mol) can be written as 2P+S, [[isobutane]] (-32.07) as 3P+T and [[neopentane]] (-40.18 kcal/mol) as 4P+Q. These four equations and 4 unknowns work out to estimations for P (-10.01 kcal/mol), S (-4.99 kcal/mol), T (-2.03 kcal/mol) and Q (-0.12 kcal/mol). Of course the accuracy will increase when the dataset increases.
 
the data allow the calculation of heat of formation for isomers. For example the pentanes:
* n-pentane = 2P + 3S = -35 (exp. -35 kcal/mol)
* isopentane = 3P + S + T + 1 gauche correction = -36.6 (exp. -36.7 kcal/mol)
* neopentane = 4P + Q = 40.1 (exp. 40.1 kcal/mol)
 
The group additivities for alkenes are:
* Cd-(H2) '''+6.27'''
* Cd-(C)(D) '''+8.55'''
* Cd-(C)2 '''+10.19'''
* Cd-(Cd)(H) '''+6.78'''
* Cd-(Cd)(C) '''+8.76'''
* C-(Cd)(H)3 '''-10.00'''
* C-(Cd)(C)(H)2 '''-4.80'''
* C-(Cd)(C)2(H) '''-1.67'''
* C-(Cd)(C)3 '''+1.77'''
* C-(Cd)2(H)2 '''-4.30'''
* [[cis isomer|cis]] correction '''+1.10'''
* alkene gauche correction '''+0.80'''
 
In alkenes the cis isomer is always less stable than the trans isomer by 1.10 kcal/mol.
 
More group additivity tables exist for a wide range of functional groups.
 
==Gronert model==
An alternative model has been developed by S. Gronert based not on breaking molecules into fragments but based on 1,2 and 1,3 interactions <ref>''An Alternative Interpretation of the C-H Bond Strengths of Alkanes'' Scott Gronert [[J. Org. Chem.]]; '''2006'''; 71(3) pp 1209 - 1219; [http://dx.doi.org/10.1021/jo052363t Abstract]</ref><ref>''An Alternative Interpretation of the C-H Bond Strengths of Alkanes'' Scott Gronert [[J. Org. Chem.]]; '''2006'''; 71(25) pp 9560 - 9560; (Addition/Correction) {{DOI|10.1021/jo062078p}}.</ref>
 
The Gronert equation reads:
<math>\ \Delta H_f = -146.0*n_{C-C} -124.2*n_{C-H} - 66.2*n_{C=C} + 10.2*n_{C-C-C} 
+ 9.3*n_{C-C-H} + 6.6*n_{H-C-H} + f(C,H)</math>
 
<math>\ f(C,H) = (231.3*n_{C} + 52.1*n_{H})</math>
 
The pentanes are now calculated as:
* n-pentane  = 4CC + 12CH + 9HCH  + 18HCC + 3CCC + (5C + 12H) = - 35.1 kcal/mol
* isopentane = 4CC + 12CH + 10HCH + 16HCC + 4CCC + (5C + 12H) = - 36.7 kcal/mol
* neopentane = 4CC + 12CH + 12HCH + 12HCC + 6CCC + (5C + 12H) =  -40.1 kcal/mol
 
Key in this treatment is the introduction of 1,3-repulsive and destabilizing interactions and this type of [[steric hindrance]] should exist considering the [[molecular geometry]] of simple alkanes. In [[methane]] the distance between the hydrogen atoms is 1.8 [[angstrom]] but the combined [[Van der Waals radius|van der Waals radii]] of hydrogen are 2.4 angstrom implying steric hindrance. Also in propane the methyl to methyl distance is 2.5 angstrom whereas the combined van der Waals radii are much larger (4 angstrom). 
 
In the Gronert model these repulsive 1,3 interactions account for trends in [[bond dissociation energy|bond dissociation energies]] which for example decrease going from methane to ethane to isopropane to neopentane. In this model the [[homolysis (chemistry)|homolysis]] of a C-H bond releases [[strain energy]] in the alkane. In traditional bonding models the driving force is the ability of alkyl groups to donate electrons to the newly formed [[free radical]] carbon.
 
== See also ==
* [[Joback method]]
 
== References ==
<references/>
 
[[Category:Thermochemistry]]
[[Category:Thermodynamic models]]

Revision as of 05:53, 10 December 2013

Heat of formation group additivity methods in thermochemistry enable the calculation and prediction of heat of formation of organic compounds based on additivity. This method was pioneered by S. W. Benson.[1]

Benson model

Mining Engineer (Excluding Oil ) Truman from Alma, loves to spend time knotting, largest property developers in singapore developers in singapore and stamp collecting. Recently had a family visit to Urnes Stave Church. Starting with simple linear and branched alkanes and alkenes the method works by collecting a large number of experimental heat of formation data (see: Heat of Formation table) and then divide each molecule up into distinct groups each consisting of a central atom with multiple ligands:

X-(A)i(B)j(C)k(D)l

To each group is then assigned an empirical incremental value which is independent on its position inside the molecule and independent of the nature of its neighbors:

  • P primary C-(C)(H)3 -10.00
  • S secondary C-(C)2(H)2 -5.00
  • T tertiary C-(C)3(H) -2.40
  • Q quaternary C-(C)4 -0.10
  • gauche correction +0.80
  • 1,5 pentane interference correction +1.60
in kcal/mol and 298 K

The following example illustrates how these values can be derived.

The experimental heat of formation of ethane is -20.03 kcal/mol and ethane consists of 2 P groups. Likewise propane (-25.02 kcal/mol) can be written as 2P+S, isobutane (-32.07) as 3P+T and neopentane (-40.18 kcal/mol) as 4P+Q. These four equations and 4 unknowns work out to estimations for P (-10.01 kcal/mol), S (-4.99 kcal/mol), T (-2.03 kcal/mol) and Q (-0.12 kcal/mol). Of course the accuracy will increase when the dataset increases.

the data allow the calculation of heat of formation for isomers. For example the pentanes:

  • n-pentane = 2P + 3S = -35 (exp. -35 kcal/mol)
  • isopentane = 3P + S + T + 1 gauche correction = -36.6 (exp. -36.7 kcal/mol)
  • neopentane = 4P + Q = 40.1 (exp. 40.1 kcal/mol)

The group additivities for alkenes are:

  • Cd-(H2) +6.27
  • Cd-(C)(D) +8.55
  • Cd-(C)2 +10.19
  • Cd-(Cd)(H) +6.78
  • Cd-(Cd)(C) +8.76
  • C-(Cd)(H)3 -10.00
  • C-(Cd)(C)(H)2 -4.80
  • C-(Cd)(C)2(H) -1.67
  • C-(Cd)(C)3 +1.77
  • C-(Cd)2(H)2 -4.30
  • cis correction +1.10
  • alkene gauche correction +0.80

In alkenes the cis isomer is always less stable than the trans isomer by 1.10 kcal/mol.

More group additivity tables exist for a wide range of functional groups.

Gronert model

An alternative model has been developed by S. Gronert based not on breaking molecules into fragments but based on 1,2 and 1,3 interactions [2][3]

The Gronert equation reads:

The pentanes are now calculated as:

  • n-pentane = 4CC + 12CH + 9HCH + 18HCC + 3CCC + (5C + 12H) = - 35.1 kcal/mol
  • isopentane = 4CC + 12CH + 10HCH + 16HCC + 4CCC + (5C + 12H) = - 36.7 kcal/mol
  • neopentane = 4CC + 12CH + 12HCH + 12HCC + 6CCC + (5C + 12H) = -40.1 kcal/mol

Key in this treatment is the introduction of 1,3-repulsive and destabilizing interactions and this type of steric hindrance should exist considering the molecular geometry of simple alkanes. In methane the distance between the hydrogen atoms is 1.8 angstrom but the combined van der Waals radii of hydrogen are 2.4 angstrom implying steric hindrance. Also in propane the methyl to methyl distance is 2.5 angstrom whereas the combined van der Waals radii are much larger (4 angstrom).

In the Gronert model these repulsive 1,3 interactions account for trends in bond dissociation energies which for example decrease going from methane to ethane to isopropane to neopentane. In this model the homolysis of a C-H bond releases strain energy in the alkane. In traditional bonding models the driving force is the ability of alkyl groups to donate electrons to the newly formed free radical carbon.

See also

References

  1. Estimation of heats of formation of organic compounds by additivity methods N. Cohen, S. W. Benson Chem. Rev.; 1993; 93(7); 2419-2438 Abstract
  2. An Alternative Interpretation of the C-H Bond Strengths of Alkanes Scott Gronert J. Org. Chem.; 2006; 71(3) pp 1209 - 1219; Abstract
  3. An Alternative Interpretation of the C-H Bond Strengths of Alkanes Scott Gronert J. Org. Chem.; 2006; 71(25) pp 9560 - 9560; (Addition/Correction) Electronic Instrument Positions Staff (Standard ) Cameron from Clarence Creek, usually spends time with hobbies and interests which include knotting, property developers in singapore apartment For sale and boomerangs. Has enrolled in a world contiki journey. Is extremely thrilled specifically about visiting ..