Pierre Raymond de Montmort: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
en>ZéroBot
m r2.7.1) (Robot: Adding pt:Pierre Rémond de Montmort
 
en>Waacstats
External links: Add persondata short description using AWB
 
Line 1: Line 1:
Hello, my name is Andrew and my spouse doesn't like it at all. I am currently a travel agent. Her family life in Ohio. Doing ballet is something she would psychic solutions by lynne - [http://chungmuroresidence.com/xe/reservation_branch2/152663 look at here now] - no means give up.
{{continuum mechanics|cTopic=[[Solid mechanics]]}}
A '''neo-Hookean solid'''<ref name=Ogden>Ogden, R. W. , 1998, '''Nonlinear Elastic Deformations''', Dover.</ref><ref name=Macosko>C. W. Macosko, 1994, '''Rheology: principles, measurement and applications''', VCH Publishers, ISBN 1-56081-579-5.</ref> is a [[hyperelastic material]] model, similar to [[Hooke's law]], that can be used for  predicting the nonlinear stress-strain behavior of materials undergoing large [[Deformation (engineering)|deformation]]s.  The model was proposed by [[Ronald Rivlin]] in 1948.  In contrast to [[linear elasticity|linear elastic]] materials, the [[stress-strain curve]] of a neo-Hookean material is not [[linear]].  Instead, the relationship between applied stress and strain is initially linear, but at a certain point the stress-strain curve will plateau.  The neo-Hookean model does not account for the [[dissipation|dissipative]] release of energy as heat while straining the material and perfect elasticity is assumed at all stages of deformation. 
 
The neo-Hookean model is based on the statistical thermodynamics of cross-linked polymer chains and is usable for [[plastic]]s and [[rubber]]-like substances. Cross-linked polymers will act in a neo-Hookean manner because initially the polymer chains can move relative to each other when a stress is applied. However, at a certain point the polymer chains will be stretched to the maximum point that the covalent cross links will allow, and this will cause a dramatic increase in the elastic modulus of the material.  The neo-Hookean material model does not predict that increase in modulus at large strains and is typically accurate only for strains less than 20%.<ref name=Gent>Gent, A. N., ed., 2001, '''Engineering with rubber''', Carl Hanser Verlag, Munich.</ref>  The model is also inadequate for biaxial states of stress and has been superseded by the [[Mooney-Rivlin solid|Mooney-Rivlin]] model.
 
The [[strain energy density function]] for an [[incompressible]] neo-Hookean material is
:<math>
  W = C_{1} (I_1-3) \,
</math>
where <math>C_{1}</math> is a material constant, and <math>I_1</math> is the first [[Invariants of tensors|invariant]] of the [[finite strain theory|left Cauchy-Green deformation tensor]], i.e.,
:<math>
  I_1 = \lambda_1^2 +  \lambda_2^2 + \lambda_3^2~
</math>
where <math>\lambda_i</math> are the [[finite strain theory|principal stretch]]es.
For three-dimensional problems the [[compressible]] neo-Hookean material the strain energy density function is given by
:<math>
  W = C_{1}~(\bar{I}_1 - 3) + D_1~(J-1)^2 ~;~~ J = \det(\boldsymbol{F}) = \lambda_1\lambda_2\lambda_3
</math>
where <math>D_1</math> is a material constant, <math>\bar{I}_1 = J^{-2/3} I_1</math> is the first invariant of the [[deviatoric]] part of the left Cauchy-Green deformation tensor, and <math>\boldsymbol{F}</math> is the [[deformation gradient]].  It can be shown that in 2D, the strain energy density function now becomes
:<math>
    W = C_{1}~(\bar{I}_1 - 2) + D_1~(J-1)^2 ~;
</math>
where <math>\bar{I}_1 = I_1/J</math>.
 
Several alternative formulations exist for compressible neo-Hookean materials, for example <ref name=Ogden/>
:<math>
  W = C_{1}~(\bar{I}_1 - 3 - 2\ln J) + D_1~(J-1)^2
</math>
For consistency with linear elasticity,
:<math>
  C_{1} = \cfrac{\mu}{2} ~;~~ D_1 = \cfrac{\kappa}{2}
</math>
where <math>\mu</math> is the [[shear modulus]] and <math>\kappa</math> is the [[bulk modulus]].
 
== Cauchy stress in terms of deformation tensors ==
 
=== Compressible neo-Hookean material ===
For a compressible Rivlin neo-Hookean material the Cauchy stress is given by
:<math>
  J~\boldsymbol{\sigma} = -p~\boldsymbol{\mathit{1}} + 2C_1~\mathrm{dev}(\bar{\boldsymbol{B}})
    = -p~\boldsymbol{\mathit{1}} + \frac{2C_1}{J^{2/3}}~\mathrm{dev}(\boldsymbol{B})
</math>
where <math>\boldsymbol{B}</math> is the left Cauchy-Green deformation tensor, and
:<math>
  p := -2D_1~J(J-1) ~;~~
  \mathrm{dev}(\bar{\boldsymbol{B}}) = \bar{\boldsymbol{B}} - \tfrac{1}{3}\bar{I}_1\boldsymbol{\mathit{1}} ~;~~
  \bar{\boldsymbol{B}} = J^{-2/3}\boldsymbol{B} ~.
</math>
For infinitesimal strains (<math>\boldsymbol{\varepsilon}</math>)
:<math>
  J \approx 1 + \mathrm{tr}(\boldsymbol{\varepsilon}) ~;~~ \boldsymbol{B} \approx \boldsymbol{\mathit{1}} + 2\boldsymbol{\varepsilon}
</math>
and the Cauchy stress can be expressed as
:<math>
  \boldsymbol{\sigma} \approx 4C_1\left(\boldsymbol{\varepsilon} - \tfrac{1}{3}\mathrm{tr}(\boldsymbol{\varepsilon})\boldsymbol{\mathit{1}}\right) + 2D_1\mathrm{tr}(\boldsymbol{\varepsilon})\boldsymbol{\mathit{1}}
</math>
Comparison with [[Hooke's law]] shows that <math>\mu = 2C_1</math> and <math>\kappa = 2D_1</math>.
 
:{| class="toccolours collapsible collapsed" width="80%" style="text-align:left"
!Proof:
|-
|
The [[stress (physics)|Cauchy stress]] in a [[compressible]] hyperelastic material is given by
:<math>
  \boldsymbol{\sigma} = \cfrac{2}{J}\left[\cfrac{1}{J^{2/3}}\left(\cfrac{\partial{W}}{\partial \bar{I}_1} + \bar{I}_1~\cfrac{\partial{W}}{\partial \bar{I}_2}\right)\boldsymbol{B} -  
  \cfrac{1}{J^{4/3}}~\cfrac{\partial{W}}{\partial \bar{I}_2}~\boldsymbol{B} \cdot\boldsymbol{B} \right]  + \left[\cfrac{\partial{W}}{\partial J} -
\cfrac{2}{3J}\left(\bar{I}_1~\cfrac{\partial{W}}{\partial \bar{I}_1} + 2~\bar{I}_2~\cfrac{\partial{W}}{\partial \bar{I}_2}\right)\right]~\boldsymbol{\mathit{1}}
</math>
For a compressible Rivlin neo-Hookean material,
:<math>
  \cfrac{\partial{W}}{\partial \bar{I}_1} = C_1 ~;~~ \cfrac{\partial{W}}{\partial \bar{I}_2} = 0 ~;~~ \cfrac{\partial{W}}{\partial J} = 2D_1(J-1)
</math>
while, for a compressible Ogden neo-Hookean material,
:<math>
  \cfrac{\partial{W}}{\partial \bar{I}_1} = C_1 ~;~~ \cfrac{\partial{W}}{\partial \bar{I}_2} = 0 ~;~~ \cfrac{\partial{W}}{\partial J} = 2D_1(J-1) - \cfrac{2C_1}{J}
</math>
Therefore, the Cauchy stress in a compressible Rivlin neo-Hookean material is given by
:<math>
  \boldsymbol{\sigma} = \cfrac{2}{J}\left[\cfrac{1}{J^{2/3}}~C_1~\boldsymbol{B} \right] + \left[2D_1(J-1)-
\cfrac{2}{3J}~C_1\bar{I}_1\right]\boldsymbol{\mathit{1}}
</math>
while that for the corresponding Ogden material is
:<math>
  \boldsymbol{\sigma} = \cfrac{2}{J}\left[\cfrac{1}{J^{2/3}}~C_1~\boldsymbol{B} \right] + \left[2D_1(J-1)-\cfrac{2C_1}{J} -
\cfrac{2}{3J}~C_1\bar{I}_1\right]\boldsymbol{\mathit{1}}
</math>
If the [[isochoric]] part of the left Cauchy-Green deformation tensor is defined as <math>\bar{\boldsymbol{B}} = J^{-2/3}\boldsymbol{B}</math>, then we can write the Rivlin neo-Heooken stress as
:<math>
  \boldsymbol{\sigma} = \cfrac{2C_1}{J}\left[\bar{\boldsymbol{B}} - \tfrac{1}{3}\bar{I}_1\boldsymbol{\mathit{1}}\right] + 2D_1(J-1)\boldsymbol{\mathit{1}} = \cfrac{2C_1}{J}\mathrm{dev}(\bar{\boldsymbol{B}}) + 2D_1(J-1)\boldsymbol{\mathit{1}}
</math>
and the Ogden neo-Hookean stress as
:<math>
  \boldsymbol{\sigma} = \cfrac{2C_1}{J}\left[\bar{\boldsymbol{B}} - \tfrac{1}{3}\bar{I}_1\boldsymbol{\mathit{1}} -\boldsymbol{\mathit{1}}  \right] + 2D_1(J-1)\boldsymbol{\mathit{1}} = \cfrac{2C_1}{J}\left[\mathrm{dev}(\bar{\boldsymbol{B}})-\boldsymbol{\mathit{1}}\right] + 2D_1(J-1)\boldsymbol{\mathit{1}}
</math>
The quantities
:<math>
  p := -2D_1~J(J-1) ~;~~ p^{*} = -2D_1~J(J-1) + 2C_1
</math>
have the form of [[pressure]]s and are usually treated as such. The Rivlin neo-Hookean stress can then be expressed in the form
:<math>
  \boldsymbol{\tau} = J~\boldsymbol{\sigma} = -p\boldsymbol{\mathit{1}} + 2C_1~\mathrm{dev}(\bar{\boldsymbol{B}})
</math>
while the Ogden neo-Hookean stress has the form
:<math>
  \boldsymbol{\tau} =  -p^{*}\boldsymbol{\mathit{1}} + 2C_1~\mathrm{dev}(\bar{\boldsymbol{B}})
</math>
|}
 
=== Incompressible neo-Hookean material ===
For an '''incompressible''' neo-Hookean material with <math> J = 1</math>
:<math>
  \boldsymbol{\sigma} = -p~\boldsymbol{\mathit{1}} + 2C_1\boldsymbol{B}
</math>
where <math>p</math> is an undetermined pressure.
 
== Cauchy stress in terms of principal stretches ==
 
=== Compressible neo-Hookean material ===
For a compressible neo-Hookean [[hyperelastic material]], the principal components of the Cauchy stress are given by
:<math>
  \sigma_{i} = 2C_1 J^{-5/3} \left[ \lambda_i^2 -\cfrac{I_1}{3} \right] + 2D_1(J-1) ~;~~ i=1,2,3
</math>
Therefore, the differences between the principal stresses are
:<math>
  \sigma_{11} - \sigma_{33} = \cfrac{2C_1}{J^{5/3}}(\lambda_1^2-\lambda_3^2) ~;~~
  \sigma_{22} - \sigma_{33} = \cfrac{2C_1}{J^{5/3}}(\lambda_2^2-\lambda_3^2)
</math>
:{| class="toccolours collapsible collapsed" width="80%" style="text-align:left"
!Proof:
|-
|
For a compressible [[hyperelastic material]], the principal components of the Cauchy stress are given by
:<math>
  \sigma_i = \cfrac{\lambda_i}{\lambda_1\lambda_2\lambda_3}~\frac{\partial W}{\partial \lambda_i} ~;~~ i=1,2,3
</math>
The strain energy density function for a compressible neo Hookean material is
:<math>
  W = C_1(\bar{I}_1-3) + D_1(J-1)^2
    = C_1\left[J^{-2/3}(\lambda_1^2+\lambda_2^2+\lambda_3^2)-3\right] + D_1(J-1)^2
</math>
Therefore,
:<math>
  \lambda_i\frac{\partial W}{\partial \lambda_i} =
    C_1\left[-\frac{2}{3}J^{-5/3}\lambda_i\frac{\partial J}{\partial \lambda_i}(\lambda_1^2+\lambda_2^2+\lambda_3^2)
              +2J^{-2/3}\lambda_i^2\right] + 2D_1(J-1)\lambda_i\frac{\partial J}{\partial \lambda_i}
</math>
Since <math>J = \lambda_1\lambda_2\lambda_3</math> we have
:<math>
  \lambda_i\frac{\partial J}{\partial \lambda_i} = \lambda_1\lambda_2\lambda_3 = J
</math>
Hence,
:<math>
  \begin{align}
  \lambda_i\frac{\partial W}{\partial \lambda_i} & =
    C_1\left[-\frac{2}{3}J^{-2/3}(\lambda_1^2+\lambda_2^2+\lambda_3^2)
              +2J^{-2/3}\lambda_i^2\right] + 2D_1J(J-1) \\
    & = 2C_1J^{-2/3}\left[-\frac{1}{3}(\lambda_1^2+\lambda_2^2+\lambda_3^2)
              +\lambda_i^2\right] + 2D_1J(J-1)
  \end{align}
</math>
The principal Cauchy stresses are therefore given by
:<math>
  \sigma_i = 2C_1J^{-5/3}\left[ \lambda_i^2 -\cfrac{I_1}{3} \right] + 2D_1(J-1)
</math>
|}
 
=== Incompressible neo-Hookean material ===
In terms of the [[finite strain theory|principal stretches]], the Cauchy stress differences for an '''incompressible''' hyperelastic material are given by
:<math>
  \sigma_{11} - \sigma_{33} = \lambda_1~\cfrac{\partial{W}}{\partial \lambda_1} - \lambda_3~\cfrac{\partial{W}}{\partial \lambda_3}~;~~
  \sigma_{22} - \sigma_{33} = \lambda_2~\cfrac{\partial{W}}{\partial \lambda_2} - \lambda_3~\cfrac{\partial{W}}{\partial \lambda_3}
</math>
For an '''incompressible''' neo-Hookean material,
:<math>
  W = C_1(\lambda_1^2 +  \lambda_2 ^2 + \lambda_3 ^2 -3)  ~;~~ \lambda_1\lambda_2\lambda_3 = 1
</math>
Therefore,
:<math>
  \cfrac{\partial{W}}{\partial \lambda_1} = 2C_1\lambda_1 ~;~~
  \cfrac{\partial{W}}{\partial \lambda_2} = 2C_1\lambda_2 ~;~~
  \cfrac{\partial{W}}{\partial \lambda_3} = 2C_1\lambda_3
</math>
which gives
:<math>
  \sigma_{11} - \sigma_{33}  = 2(\lambda_1^2-\lambda_3^2)C_1  ~;~~
  \sigma_{22} - \sigma_{33}  = 2(\lambda_2^2-\lambda_3^2)C_1
</math>
 
==Uniaxial extension==
 
=== Compressible neo-Hookean material ===
[[Image:CompNeoHook.svg|thumb|350px|right|The true stress as a function of uniaxial stretch predicted by a compressible neo-Hookean material for various values of <math>C_1,D_1</math>.  The material properties are representative of [[natural rubber]].]]
For a compressible material undergoing uniaxial extension, the principal stretches are
:<math>
  \lambda_1 = \lambda ~;~~ \lambda_2 = \lambda_3 = \sqrt{\tfrac{J}{\lambda}} ~;~~
  I_1 = \lambda^2 + \tfrac{2J}{\lambda}
</math>
Hence, the true (Cauchy) stresses for a compressible neo-Hookean material are given by
:<math>
  \begin{align}
    \sigma_{11} & = \cfrac{4C_1}{3J^{5/3}}\left(\lambda^2 - \tfrac{J}{\lambda}\right)  + 2D_1(J-1) \\
    \sigma_{22} & = \sigma_{33} = \cfrac{2C_1}{3J^{5/3}}\left(\tfrac{J}{\lambda} - \lambda^2\right) + 2D_1(J-1)
  \end{align}
</math>
The stress differences are given by
:<math>
  \sigma_{11} - \sigma_{33} = \cfrac{2C_1}{J^{5/3}}\left(\lambda^2 - \tfrac{J}{\lambda}\right) ~;~~
  \sigma_{22} - \sigma_{33} = 0
</math>
If the material is unconstrained we have <math>\sigma_{22} = \sigma_{33} = 0</math>.  Then
:<math>
  \sigma_{11} = \cfrac{2C_1}{J^{5/3}}\left(\lambda^2 - \tfrac{J}{\lambda}\right)
</math>
Equating the two expressions for <math>\sigma_{11}</math> gives a relation for <math>J</math> as a function of <math>\lambda</math>, i.e.,
:<math>
  \cfrac{4C_1}{3J^{5/3}}\left(\lambda^2 - \tfrac{J}{\lambda}\right)  + 2D_1(J-1) = \cfrac{2C_1}{J^{5/3}}\left(\lambda^2 - \tfrac{J}{\lambda}\right)
</math>
or
:<math>
  D_1 J^{8/3} - D_1 J^{5/3} +  \tfrac{C_1}{3\lambda} J - \tfrac{C_1\lambda^2}{3} = 0
</math>
The above equation can be solved numerically using a [[Newton-Raphson]] iterative root finding procedure.
 
=== Incompressible neo-Hookean material ===
[[Image:Moonie-Rivlin.PNG|thumb|350px|right|Comparison of experimental results (dots) and predictions for [[Hooke's law]](1), neo-Hookean solid(2) and [[Mooney-Rivlin solid]] models(3)]]
 
Under uniaxial extension, <math>\lambda_1 = \lambda\,</math> and <math>\lambda_2 = \lambda_3 = 1/\sqrt{\lambda}</math>.  Therefore,
:<math>
  \sigma_{11} - \sigma_{33}  = 2C_1\left(\lambda^2 - \cfrac{1}{\lambda}\right)  ~;~~
  \sigma_{22} - \sigma_{33}  = 0
</math>
 
Assuming no traction on the sides, <math>\sigma_{22}=\sigma_{33}=0</math>, so we can write
:<math>
  \sigma_{11}= 2C_1 \left(\lambda^2 - \cfrac{1}{\lambda}\right)
  = 2C_1\left(\frac {3\varepsilon_{11} + 3\varepsilon_{11}^2 +\varepsilon_{11}^3} {1+\varepsilon_{11}}\right)
</math>
where <math> \varepsilon_{11}=\lambda-1 </math> is the engineering [[finite strain theory|strain]].  This equation is often written in alternative notation as
:<math>
  T_{11}= 2C_1 \left(\alpha^2 - \cfrac{1}{\alpha}\right)
</math>
 
The equation above is for the '''true stress''' (ratio of the elongation force to deformed cross-section). For the [[engineering stress]] the equation is:
:<math>\sigma_{11}^{\mathrm{eng}}= 2C_1 \left(\lambda - \cfrac{1}{\lambda^2}\right)</math>
For small deformations <math>\varepsilon \ll 1</math> we will have:
:<math>\sigma_{11}= 6C_1 \varepsilon = 3\mu\varepsilon</math>
 
Thus, the equivalent [[Young's modulus]] of a neo-Hookean solid in uniaxial extension is <math>3\mu</math>, which is in concordance with linear elasticity (<math>E=2\mu(1+\nu)</math> with <math>\nu=0.5</math> for incompressibility).
 
== Equibiaxial extension ==
 
=== Compressible neo-Hookean material ===
[[Image:CompNeoHookBiax.svg|thumb|350px|right|The true stress as a function of biaxial stretch predicted by a compressible neo-Hookean material for various values of <math>C_1,D_1</math>.  The material properties are representative of [[natural rubber]].]]
In the case of equibiaxial extension
:<math>
  \lambda_1 = \lambda_2 = \lambda ~;~~ \lambda_3 = \tfrac{J}{\lambda^2} ~;~~ I_1 = 2\lambda^2 + \tfrac{J^2}{\lambda^4}
</math>
Therefore,
:<math>
  \begin{align}
    \sigma_{11} & =  2C_1\left[\cfrac{\lambda^2}{J^{5/3}} - \cfrac{1}{3J}\left(2\lambda^2+\cfrac{J^2}{\lambda^4}\right)\right] + 2D_1(J-1) \\
                & = \sigma_{22} \\
    \sigma_{33} & = 2C_1\left[\cfrac{J^{1/3}}{\lambda^4} - \cfrac{1}{3J}\left(2\lambda^2+\cfrac{J^2}{\lambda^4}\right)\right] + 2D_1(J-1)
  \end{align}
</math>
The stress differences are
:<math>
  \sigma_{11} - \sigma_{22} = 0 ~;~~ \sigma_{11} - \sigma_{33} = \cfrac{2C_1}{J^{5/3}}\left(\lambda^2 - \cfrac{J^2}{\lambda^4}\right)
</math>
If the material is in a state of plane stress then <math>\sigma_{33} = 0</math> and we have
:<math>
  \sigma_{11} = \sigma_{22} = \cfrac{2C_1}{J^{5/3}}\left(\lambda^2 - \cfrac{J^2}{\lambda^4}\right)
</math>
We also have a relation between <math>J</math> and <math>\lambda</math>:
:<math>
  2C_1\left[\cfrac{\lambda^2}{J^{5/3}} - \cfrac{1}{3J}\left(2\lambda^2+\cfrac{J^2}{\lambda^4}\right)\right] + 2D_1(J-1) = \cfrac{2C_1}{J^{5/3}}\left(\lambda^2 - \cfrac{J^2}{\lambda^4}\right)
</math>
or,
:<math>
  \left(2D_1 - \cfrac{C_1}{\lambda^4}\right)J^2 + \cfrac{3C_1}{\lambda^4}J^{4/3} - 3D_1J - 2C_1\lambda^2 = 0
</math>
This equation can be solved for <math>J</math> using Newton's method.
 
=== Incompressible neo-Hookean material ===
For an incompressible material <math>J=1</math> and the differences between the principal Cauchy stresses take the form
:<math>
  \sigma_{11} - \sigma_{22} = 0 ~;~~ \sigma_{11} - \sigma_{33} = 2C_1\left(\lambda^2 - \cfrac{1}{\lambda^4}\right)
</math>
Under plane stress conditions we have
:<math>
  \sigma_{11} = 2C_1\left(\lambda^2 - \cfrac{1}{\lambda^4}\right)
</math>
 
== Pure dilation ==
For the case of pure dilation
:<math>
  \lambda_1 = \lambda_2 = \lambda_3 = \lambda ~:~~ J = \lambda^3 ~;~~ I_1 = 3\lambda^2
</math>
Therefore, the principal Cauchy stresses for a compressible neo-Hookean material are given by
:<math>
    \sigma_i = 2C_1\left(\cfrac{1}{\lambda^3} - \cfrac{1}{\lambda}\right) + 2D_1(\lambda^3-1)
</math>
If the material is incompressible then <math>\lambda^3 = 1</math> and the principal stresses can be arbitrary.
 
The figures below show that extremely high stresses are needed to achieve large triaxial extensions or compressions. Equivalently, relatively small triaxial stretch states can cause very high stresses to develop in a rubber-like material.  Note also that the magnitude of the stress is quite sensitive to the bulk modulus but not to the shear modulus.
{| border="0"
|-
| valign="bottom"|
[[Image:CompNeoHookTriax.svg|thumb|350px|right|The true stress as a function of equi-triaxial stretch predicted by a compressible neo-Hookean material for various values of <math>C_1,D_1</math>.  The material properties are representative of [[natural rubber]].]]
| valign="bottom"|
[[Image:CompNeoHookTriaxJsvg.svg|thumb|350px|right|The true stress as a function of J predicted by a compressible neo-Hookean material for various values of <math>C_1,D_1</math>.  The material properties are representative of [[natural rubber]].]]
|-
|}
 
==Simple shear==
For the case of [[simple shear]] the deformation gradient in terms of components with respect to a reference basis is of the form <ref name=Ogden>Ogden, R. W., 1984, '''Nonlinear elastic deformations''', Dover</ref>
:<math>
  \boldsymbol{F} = \begin{bmatrix} 1 & \gamma & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}
</math>
where <math>\gamma</math> is the shear deformation.  Therefore the left Cauchy-Green deformation tensor is
:<math>
  \boldsymbol{B} = \boldsymbol{F}\cdot\boldsymbol{F}^T = \begin{bmatrix} 1+\gamma^2 & \gamma & 0 \\ \gamma & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}
</math>
 
=== Compressible neo-Hookean material ===
In this case <math>J = \det(\boldsymbol{F}) = 1</math>.  Hence, <math> \boldsymbol{\sigma} = 2C_1\mathrm{dev}(\boldsymbol{B}) </math>.  Now,
:<math>
  \mathrm{dev}(\boldsymbol{B}) = \boldsymbol{B} - \tfrac{1}{3}\mathrm{tr}(\boldsymbol{B})\boldsymbol{\mathit{1}}
    = \boldsymbol{B} - \tfrac{1}{3}(3+\gamma^2)\boldsymbol{\mathit{1}} =
    \begin{bmatrix} \tfrac{2}{3}\gamma^2 & \gamma & 0 \\ \gamma & -\tfrac{1}{3}\gamma^2 & 0 \\ 0 & 0 & -\tfrac{1}{3}\gamma^2 \end{bmatrix}
</math>
Hence the Cauchy stress is given by
:<math>
  \boldsymbol{\sigma} =
    \begin{bmatrix} \tfrac{4C_1}{3}\gamma^2 & 2C_1\gamma & 0 \\ 2C_1\gamma & -\tfrac{2C_1}{3}\gamma^2 & 0 \\ 0 & 0 & -\tfrac{2C_1}{3}\gamma^2 \end{bmatrix}
</math>
 
=== Incompressible neo-Hookean material ===
Using the relation for the Cauchy stress for an incompressible neo-Hookean material we get
:<math>
  \boldsymbol{\sigma} = -p\boldsymbol{\mathit{1}} + 2C_1\boldsymbol{B} =
    \begin{bmatrix} 2C_1(1+\gamma^2)-p & 2C_1\gamma & 0 \\ 2C_1\gamma & 2C_1 - p & 0 \\ 0 & 0 & 2C_1 -p \end{bmatrix}
</math>
Thus neo-Hookean solid shows linear dependence of shear stresses upon shear deformation and quadratic dependence of the normal stress difference on the shear deformation.  Note that the expressions for the Cauchy stress for a compressible and an incompressible neo-Hookean material in simple shear represent the same quantity and provide a means of determining the unknown pressure <math>p</math>.
 
==References==
<references/>
 
== See also ==
* [[Hyperelastic material]]
* [[Strain energy density function]]
* [[Mooney-Rivlin solid]]
* [[Finite strain theory]]
* [[Stress measures]]
 
[[Category:Continuum mechanics]]
[[Category:Elasticity (physics)]]
[[Category:Non-Newtonian fluids]]
[[Category:Rubber properties]]
[[Category:Solid mechanics]]

Latest revision as of 12:20, 20 October 2013

Template:Continuum mechanics A neo-Hookean solid[1][2] is a hyperelastic material model, similar to Hooke's law, that can be used for predicting the nonlinear stress-strain behavior of materials undergoing large deformations. The model was proposed by Ronald Rivlin in 1948. In contrast to linear elastic materials, the stress-strain curve of a neo-Hookean material is not linear. Instead, the relationship between applied stress and strain is initially linear, but at a certain point the stress-strain curve will plateau. The neo-Hookean model does not account for the dissipative release of energy as heat while straining the material and perfect elasticity is assumed at all stages of deformation.

The neo-Hookean model is based on the statistical thermodynamics of cross-linked polymer chains and is usable for plastics and rubber-like substances. Cross-linked polymers will act in a neo-Hookean manner because initially the polymer chains can move relative to each other when a stress is applied. However, at a certain point the polymer chains will be stretched to the maximum point that the covalent cross links will allow, and this will cause a dramatic increase in the elastic modulus of the material. The neo-Hookean material model does not predict that increase in modulus at large strains and is typically accurate only for strains less than 20%.[3] The model is also inadequate for biaxial states of stress and has been superseded by the Mooney-Rivlin model.

The strain energy density function for an incompressible neo-Hookean material is

W=C1(I13)

where C1 is a material constant, and I1 is the first invariant of the left Cauchy-Green deformation tensor, i.e.,

I1=λ12+λ22+λ32

where λi are the principal stretches. For three-dimensional problems the compressible neo-Hookean material the strain energy density function is given by

W=C1(I¯13)+D1(J1)2;J=det(F)=λ1λ2λ3

where D1 is a material constant, I¯1=J2/3I1 is the first invariant of the deviatoric part of the left Cauchy-Green deformation tensor, and F is the deformation gradient. It can be shown that in 2D, the strain energy density function now becomes

W=C1(I¯12)+D1(J1)2;

where I¯1=I1/J.

Several alternative formulations exist for compressible neo-Hookean materials, for example [1]

W=C1(I¯132lnJ)+D1(J1)2

For consistency with linear elasticity,

C1=μ2;D1=κ2

where μ is the shear modulus and κ is the bulk modulus.

Cauchy stress in terms of deformation tensors

Compressible neo-Hookean material

For a compressible Rivlin neo-Hookean material the Cauchy stress is given by

Jσ=p1+2C1dev(B¯)=p1+2C1J2/3dev(B)

where B is the left Cauchy-Green deformation tensor, and

p:=2D1J(J1);dev(B¯)=B¯13I¯11;B¯=J2/3B.

For infinitesimal strains (ε)

J1+tr(ε);B1+2ε

and the Cauchy stress can be expressed as

σ4C1(ε13tr(ε)1)+2D1tr(ε)1

Comparison with Hooke's law shows that μ=2C1 and κ=2D1.

Incompressible neo-Hookean material

For an incompressible neo-Hookean material with J=1

σ=p1+2C1B

where p is an undetermined pressure.

Cauchy stress in terms of principal stretches

Compressible neo-Hookean material

For a compressible neo-Hookean hyperelastic material, the principal components of the Cauchy stress are given by

σi=2C1J5/3[λi2I13]+2D1(J1);i=1,2,3

Therefore, the differences between the principal stresses are

σ11σ33=2C1J5/3(λ12λ32);σ22σ33=2C1J5/3(λ22λ32)

Incompressible neo-Hookean material

In terms of the principal stretches, the Cauchy stress differences for an incompressible hyperelastic material are given by

σ11σ33=λ1Wλ1λ3Wλ3;σ22σ33=λ2Wλ2λ3Wλ3

For an incompressible neo-Hookean material,

W=C1(λ12+λ22+λ323);λ1λ2λ3=1

Therefore,

Wλ1=2C1λ1;Wλ2=2C1λ2;Wλ3=2C1λ3

which gives

σ11σ33=2(λ12λ32)C1;σ22σ33=2(λ22λ32)C1

Uniaxial extension

Compressible neo-Hookean material

The true stress as a function of uniaxial stretch predicted by a compressible neo-Hookean material for various values of C1,D1. The material properties are representative of natural rubber.

For a compressible material undergoing uniaxial extension, the principal stretches are

λ1=λ;λ2=λ3=Jλ;I1=λ2+2Jλ

Hence, the true (Cauchy) stresses for a compressible neo-Hookean material are given by

σ11=4C13J5/3(λ2Jλ)+2D1(J1)σ22=σ33=2C13J5/3(Jλλ2)+2D1(J1)

The stress differences are given by

σ11σ33=2C1J5/3(λ2Jλ);σ22σ33=0

If the material is unconstrained we have σ22=σ33=0. Then

σ11=2C1J5/3(λ2Jλ)

Equating the two expressions for σ11 gives a relation for J as a function of λ, i.e.,

4C13J5/3(λ2Jλ)+2D1(J1)=2C1J5/3(λ2Jλ)

or

D1J8/3D1J5/3+C13λJC1λ23=0

The above equation can be solved numerically using a Newton-Raphson iterative root finding procedure.

Incompressible neo-Hookean material

Comparison of experimental results (dots) and predictions for Hooke's law(1), neo-Hookean solid(2) and Mooney-Rivlin solid models(3)

Under uniaxial extension, λ1=λ and λ2=λ3=1/λ. Therefore,

σ11σ33=2C1(λ21λ);σ22σ33=0

Assuming no traction on the sides, σ22=σ33=0, so we can write

σ11=2C1(λ21λ)=2C1(3ε11+3ε112+ε1131+ε11)

where ε11=λ1 is the engineering strain. This equation is often written in alternative notation as

T11=2C1(α21α)

The equation above is for the true stress (ratio of the elongation force to deformed cross-section). For the engineering stress the equation is:

σ11eng=2C1(λ1λ2)

For small deformations ε1 we will have:

σ11=6C1ε=3με

Thus, the equivalent Young's modulus of a neo-Hookean solid in uniaxial extension is 3μ, which is in concordance with linear elasticity (E=2μ(1+ν) with ν=0.5 for incompressibility).

Equibiaxial extension

Compressible neo-Hookean material

The true stress as a function of biaxial stretch predicted by a compressible neo-Hookean material for various values of C1,D1. The material properties are representative of natural rubber.

In the case of equibiaxial extension

λ1=λ2=λ;λ3=Jλ2;I1=2λ2+J2λ4

Therefore,

σ11=2C1[λ2J5/313J(2λ2+J2λ4)]+2D1(J1)=σ22σ33=2C1[J1/3λ413J(2λ2+J2λ4)]+2D1(J1)

The stress differences are

σ11σ22=0;σ11σ33=2C1J5/3(λ2J2λ4)

If the material is in a state of plane stress then σ33=0 and we have

σ11=σ22=2C1J5/3(λ2J2λ4)

We also have a relation between J and λ:

2C1[λ2J5/313J(2λ2+J2λ4)]+2D1(J1)=2C1J5/3(λ2J2λ4)

or,

(2D1C1λ4)J2+3C1λ4J4/33D1J2C1λ2=0

This equation can be solved for J using Newton's method.

Incompressible neo-Hookean material

For an incompressible material J=1 and the differences between the principal Cauchy stresses take the form

σ11σ22=0;σ11σ33=2C1(λ21λ4)

Under plane stress conditions we have

σ11=2C1(λ21λ4)

Pure dilation

For the case of pure dilation

λ1=λ2=λ3=λ:J=λ3;I1=3λ2

Therefore, the principal Cauchy stresses for a compressible neo-Hookean material are given by

σi=2C1(1λ31λ)+2D1(λ31)

If the material is incompressible then λ3=1 and the principal stresses can be arbitrary.

The figures below show that extremely high stresses are needed to achieve large triaxial extensions or compressions. Equivalently, relatively small triaxial stretch states can cause very high stresses to develop in a rubber-like material. Note also that the magnitude of the stress is quite sensitive to the bulk modulus but not to the shear modulus.

The true stress as a function of equi-triaxial stretch predicted by a compressible neo-Hookean material for various values of C1,D1. The material properties are representative of natural rubber.
The true stress as a function of J predicted by a compressible neo-Hookean material for various values of C1,D1. The material properties are representative of natural rubber.

Simple shear

For the case of simple shear the deformation gradient in terms of components with respect to a reference basis is of the form [1]

F=[1γ0010001]

where γ is the shear deformation. Therefore the left Cauchy-Green deformation tensor is

B=FFT=[1+γ2γ0γ10001]

Compressible neo-Hookean material

In this case J=det(F)=1. Hence, σ=2C1dev(B). Now,

dev(B)=B13tr(B)1=B13(3+γ2)1=[23γ2γ0γ13γ200013γ2]

Hence the Cauchy stress is given by

σ=[4C13γ22C1γ02C1γ2C13γ20002C13γ2]

Incompressible neo-Hookean material

Using the relation for the Cauchy stress for an incompressible neo-Hookean material we get

σ=p1+2C1B=[2C1(1+γ2)p2C1γ02C1γ2C1p0002C1p]

Thus neo-Hookean solid shows linear dependence of shear stresses upon shear deformation and quadratic dependence of the normal stress difference on the shear deformation. Note that the expressions for the Cauchy stress for a compressible and an incompressible neo-Hookean material in simple shear represent the same quantity and provide a means of determining the unknown pressure p.

References

  1. 1.0 1.1 1.2 Ogden, R. W. , 1998, Nonlinear Elastic Deformations, Dover. Cite error: Invalid <ref> tag; name "Ogden" defined multiple times with different content
  2. C. W. Macosko, 1994, Rheology: principles, measurement and applications, VCH Publishers, ISBN 1-56081-579-5.
  3. Gent, A. N., ed., 2001, Engineering with rubber, Carl Hanser Verlag, Munich.

See also