Diamond cubic: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
en>Double sharp
α-tin has a diamond cubic crystal structure. β-tin is metallic.
 
en>Mark Arsten
Removing link(s) to "Material": deleted via Afd. (TW)
Line 1: Line 1:
== プラス中国 ==
In the [[mathematics]] of [[probability]], a '''[[stochastic process]]''' is a random [[function (mathematics)|function]]. In practical applications, the domain over which the function is defined is a time interval (''[[time series]]'') or a region of space (''[[random field]]'').


スプーン、貴重。ハプニングマップは最高の要素が不足してリンシー、あたりに動揺地図のハプニングを取得誰でも、多くを始めた、と今私はあなたが提供する招待! [http://www.lamartcorp.com/modules/mod_menu/rakuten_cl_4.php クリスチャンルブタン 店舗] '<br><br>秦ゆうハングは声が言った立っていた。<br><br>口話。秦ゆうの心臓は慎重に4使者を見ていた。<br><br>は秦ゆう」は、二つの目が何を推測することができます参照してください [http://www.lamartcorp.com/modules/mod_menu/rakuten_cl_1.php クリスチャンルブタン 靴 メンズ] 'それは、このハプニングマップは無謀と中国語円の願望であると思われる'しかし、マロンメッセンジャーアオFengzongが斜めに笑顔に見えること誰が可変である彼の心、考える方法を知りません。 [http://www.lamartcorp.com/modules/mod_menu/rakuten_cl_2.php クリスチャンルブタン 東京] '<br>決定を行うために秦ゆう心を<br>。<br>今マロン、Gorefiendパーティーがマップをハプニングしているhuan​​hangrn事実、戦うために戦うには、別の2である。もちろん...... Gorefiendの1にもマップをハプニング競争するオークションに参加している、他の人が介入しないことができることができますしたい、そこにマロンがあります。プラス中国<br><br>'私はリンシーごとに2つを持っている [http://www.lamartcorp.com/modules/mod_menu/rakuten_cl_2.php クリスチャンルブタン 東京]。'<br><br>最初の入札の声が聞こえた。<br><br>秦YuはGorefiend「杜Zhongjun [http://www.lamartcorp.com/modules/mod_menu/rakuten_cl_1.php クリスチャンルブタン メンズ] '、サイレント場所に向かって見た。
Familiar examples of '''time series''' include [[stock market]] and exchange rate fluctuations, signals such as speech, audio and video; medical data such as a patient's [[EKG]], [[Electroencephalography|EEG]], blood pressure or temperature; and random movement such as [[Brownian motion]] or [[random walk]]s.
相关的主题文章:
 
<ul>
Examples of '''random fields''' include static images, random topographies (landscapes), or composition variations of an inhomogeneous material.
 
 
  <li>[http://568yx.com/home.php?mod=space&uid=4892 http://568yx.com/home.php?mod=space&uid=4892]</li>
==Stochastic processes topics==
 
 
  <li>[http://english.wudanggongfuwang.com/plus/feedback.php?aid=4 http://english.wudanggongfuwang.com/plus/feedback.php?aid=4]</li>
:''This list is currently incomplete.'' See also [[:Category:Stochastic_processes]]
 
 
  <li>[http://mvforum.anrc-services.com/activity/activity http://mvforum.anrc-services.com/activity/activity]</li>
* [[Basic affine jump diffusion]] [[Talk:Basic affine jump diffusion| ]]
 
* [[Bernoulli process]]: [[Discrete-time stochastic process|discrete-time]] processes with two possible states.
</ul>
** [[Bernoulli scheme]]s: discrete-time processes with ''N'' possible states; every stationary process in ''N'' outcomes is a Bernoulli scheme, and vice-versa.  
* [[Birth-death process]] [[Talk:Birth-death process| ]]
* [[Branching process]] [[Talk:Branching process| ]]
* [[Branching random walk]] [[Talk:Branching random walk| ]]
* [[Brownian bridge]] [[Talk:Brownian bridge| ]]
* [[Brownian motion]] [[Talk:Brownian motion| ]]
* [[Chinese restaurant process]] [[Talk:Chinese restaurant process| ]]
* [[CIR process ]] [[Talk:CIR process| ]]
* [[Cointelation ]]
* [[Continuous stochastic process]] [[Talk:Continuous stochastic process| ]]
* [[Cox process]] [[Talk:Cox process| ]]
*[[Dirichlet process]]es
* [[Finite-dimensional distribution]] [[Talk:Finite-dimensional distribution| ]]
* [[Galton&ndash;Watson process]] [[Talk:Galton&ndash;Watson process| ]]
* [[Gamma process]] [[Talk:Gamma process| ]]
* [[Gaussian process]] [[Talk:Gaussian process| ]] – a process where all linear combinations of coordinates are [[normal distribution|normally distributed]] random variables.
** [[Gauss&ndash;Markov process]] [[Talk:Gauss&ndash;Markov process| ]] (cf. below)
*[[Girsanov's theorem]] [[Talk:Girsanov's theorem| ]]
*[[Homogeneous process]]es: processes where the domain has some [[symmetry]] and the finite-dimensional probability distributions also have that symmetry. Special cases include [[stationary process]]es, also called time-homogeneous.
* [[Karhunen&ndash;Loève theorem]]
* [[Lévy process]] [[Talk:Lévy process| ]]
* [[Local time (mathematics)]] [[Talk:Local time (mathematics)| ]]
* [[Loop-erased random walk]] [[Talk:Loop-erased random walk| ]]
* [[Markov process]]es are those in which the future is conditionally independent of the past given the present.
** [[Markov chain]] [[Talk:Markov chain| ]]
** [[Continuous-time Markov process]] [[Talk:Continuous-time Markov process| ]]
** [[Markov process]] [[Talk:Markov process| ]]
** [[Semi-Markov process]] [[Talk:Semi-Markov process| ]]
** [[Gauss&ndash;Markov process]]es: processes that are both Gaussian and Markov
*[[Martingale (probability theory)|Martingale]]s – processes with constraints on the expectation
* [[Onsager–Machlup function]] [[Talk:Onsager–Machlup function| ]]
* [[Ornstein&ndash;Uhlenbeck process]] [[Talk:Ornstein&ndash;Uhlenbeck process| ]]
* Percolation theory
*[[Point process]]es: random arrangements of points in a space <math>S</math>. They can be modelled as stochastic processes where the domain is a sufficiently large family of subsets of ''S'', ordered by inclusion; the range is the set of natural numbers; and, if ''A'' is a subset of ''B'', ''&fnof;''(''A'')&nbsp;≤&nbsp;''&fnof;''(''B'') with probability&nbsp;1.
* [[Poisson process]] [[Talk:Poisson process| ]]
** [[Compound Poisson process]] [[Talk:Compound Poisson process| ]]
* [[Population process]] [[Talk:Population process| ]]
* [[Stochastic cellular automaton|Probabilistic cellular automaton]] [[talk:Stochastic cellular automaton| ]]
* [[Queueing theory]] [[Talk:Queueing theory| ]]
** [[Queue (data structure)|Queue]] [[Talk:Queue (data structure)| ]]
* [[Random field]] [[Talk:Random field| ]]
** [[Gaussian random field]] [[Talk:Gaussian random field| ]]
** [[Markov random field]] [[Talk:Markov random field| ]]
* [[Sample-continuous process]] [[Talk:Sample-continuous process| ]]
* [[Stationary process]] [[Talk:Stationary process| ]]
* [[Stochastic calculus]] [[Talk:Stochastic calculus| ]]
** [[Itō calculus]] [[Talk:Itō calculus| ]]
** [[Malliavin calculus]] [[Talk:Malliavin calculus| ]]
** [[Semimartingale]] [[Talk:Semimartingale| ]]
** [[Stratonovich integral]] [[Talk:Stratonovich integral| ]]
* [[Stochastic differential equation]] [[Talk:Stochastic differential equation| ]]
* [[Stochastic process]] [[Talk:Stochastic process| ]]
* [[Telegraph process]] [[Talk:Telegraph process| ]]
* [[Time series]] [[Talk:Time series| ]]
* [[Wald's martingale]] [[Talk:Wald's martingale| ]]
* [[Wiener process]] [[Talk:Wiener process| ]]
 
[[Category:Mathematics-related lists|Stochastic processes topics]]
[[Category:Stochastic processes]]
[[Category:Statistics-related lists]]

Revision as of 04:01, 16 January 2014

In the mathematics of probability, a stochastic process is a random function. In practical applications, the domain over which the function is defined is a time interval (time series) or a region of space (random field).

Familiar examples of time series include stock market and exchange rate fluctuations, signals such as speech, audio and video; medical data such as a patient's EKG, EEG, blood pressure or temperature; and random movement such as Brownian motion or random walks.

Examples of random fields include static images, random topographies (landscapes), or composition variations of an inhomogeneous material.

Stochastic processes topics

This list is currently incomplete. See also Category:Stochastic_processes