Strong pseudoprime: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
en>RDBury
→‎Examples: Expand OEIS links
 
en>Rjwilmsi
m Journal cites, added 1 DOI using AWB (9904)
Line 1: Line 1:
== Polo Ralph Lauren Femme Et Aussie John McBeath ==
[[File:Carl Friedrich Gauss.jpg|right|thumb|250px|[[Carl Gauss]]]]
'''Gaussian units''' comprise a [[metric system]] of [[units of measurement|physical units]]. This system is the most common of the several electromagnetic unit systems based on [[Centimetre gram second system of units|cgs (centimetre–gram–second) units]]. It is also called the '''Gaussian unit system''', '''Gaussian-cgs units''', or often just '''cgs units'''.<ref>One of many examples of using the term "cgs units" to refer to Gaussian units is: [http://nlpc.stanford.edu/nleht/Science/reference/conversion.pdf Lecture notes from Stanford University]</ref> The term "cgs units" is ambiguous and therefore to be avoided if possible: cgs contains within it several conflicting sets of electromagnetism units, not just Gaussian units, as described below.


Market Street.) Voir Boston L après discussion T Wharf.. Un vieux de plusieurs siècles statue grotesque d'un vieil homme est à moitié enterré quelques mètres. Pommes poussent sur de petits arbres à feuilles caduques. Il suffit de télécharger votre conception et le contrôle en ligne. <br><br>Et Aussie John McBeath, courir de nouveaux rêves de faire des affaires dans l'ancien paradis hippie de Goa, craint à quelle vitesse cela peut arriver qu'il se querelle avec l'Inde maladroit bureaucratie et rencontre l'étrange et souvent inquiétant, tout en essayant de sauver une relation. <br><br>[15] vagues plus en plus de colons vietnamiens, dont le royaume du Cambodge ne pouvait pas empêcher, car il a été affaibli par la guerre avec la Thaïlande, lentement . Un geste audacieux, mais avec beaucoup de grands [http://www.allogateaux.fr/albumpiecesmontees/slides/public.html Polo Ralph Lauren Femme] blocs de bureau à proximité d'écureuil rouge pourrait être juste ce que les besoins de la région.. <br><br>Tout cela serait faire est de mettre les voisins en guerre avec un autre. [http://www.allogateaux.fr/piecesmontees/album/gallery.html Ray Ban Clubmaster] Alors maintenant, il continue à tomber, à la fois en raison de la crise en Europe et qui sait quoi d'autre. Miaulements. Aujourd'hui, il vit à Los Angeles et est plus susceptible d'être trouvé surfer sur les vagues de [http://www.stadt-land.ch/jcarousel/images/banner.asp Ray Ban Suisse] coincé à l'intérieur d'une salle de sport: "Je suis la personne la plus malsain dans le monde.". <br><br>Les élèves entendent parler de comment la pollution peut être dévastateur pour la nature. Les gens qui me connaissent déjà auront eu un sentiment croissant d'appréhension tout de leurs propres comme ils lisent ceci. En outre, un corps robuste et de plus en plus de recherches montrent clairement que la vitamine D est absolument essentiel pour la bonne santé et la prévention des maladies. <br><br>Vivre des filles sexy sur la came répondre à vos demandes et directions vous met dans le contrôle et permet à vos fantasmes se déchaînent comme les filles des réponses et des discussions avec vous, répond à vos demandes, et réalise quoi que ce soit, elle est prête à faire ce que vous lui diriger. <br><br>Entièrement développé, le réseau de chauffage par conséquent d'économiser environ 300 000 chaque année. Vouloir laisser [les femmes dans le public] connaître OK si elles avaient des avortements. Développé documents de meilleures pratiques pour les [http://www.societelibre-eure.org/config/comment.php Ceinture Louis Vuitton Pas Cher] médias sociaux, le renforcement des liens et l'optimisation de conversion. <br><br>Ils ont fait leur argent et surtout gardé presque entièrement avec les détaillants nationaux solvables Les gens de D 'accord n'a pas couper les coins ronds, mais négocié offres intelligentes avant de se passer à la construction. Instagram de commencer à partager des données utilisateur avec Facebook.<ul>
The most common alternative to Gaussian units are [[International System of Units|SI units]]. SI units are predominant in most fields, and continue to increase in popularity at the expense of Gaussian units.<ref name=Rowlett/><ref name=JacksonEditions/> (Other alternative unit systems also exist, as discussed below.) Conversions between Gaussian units and SI units are not as simple as normal unit conversions. For example, the ''formulas'' for physical laws of electromagnetism (such as [[Maxwell's equations]]) need to be adjusted depending on what system of units one uses. As another example, quantities that are [[dimensionless]] (loosely "unitless") in one system may have dimension in another.
 
  <li>[http://oscarbernie.com/boards/profile.php?id=38413 http://oscarbernie.com/boards/profile.php?id=38413]</li>
 
  <li>[http://www.thomassankara.net/spip.php?article605&date=2008-05/ http://www.thomassankara.net/spip.php?article605&date=2008-05/]</li>
 
  <li>[http://enseignement-lsf.com/spip.php?article64#forum18089638 http://enseignement-lsf.com/spip.php?article64#forum18089638]</li>
 
  <li>[http://scottalanciolek.com/Main_Page http://scottalanciolek.com/Main_Page]</li>
 
  <li>[http://enseignement-lsf.com/spip.php?article64#forum18069912 http://enseignement-lsf.com/spip.php?article64#forum18069912]</li>
 
</ul>


== Nike Air Max Note de la courbe dans le bas du dos / lombaire ==
==History==
Gaussian units existed before the CGS system.  The British Association report of 1873 that proposed the CGS contains gaussian units derived from the foot–grain–second and metre–gram–second as well.  There are also references to foot–pound–second gaussian units.


Si vous ne voulez pas aller trouver un de ces stands d'information, alors la plupart des hôtels de la région auront également une belle sélection de informations touristiques et Guide de Voyage brochures. Ils varient en taille de moins d'un quart de pouce à plusieurs pouces de diamètre. <br><br>Le mécanisme derrière vertige positionnel bénin ou VPPB est peu de débris à l'intérieur de l'oreille interne. En déverrouillant ces obstacles, les professeurs comme M. Nous offrons les services de gestion à des tarifs très raisonnables. Rappelez-vous vos concurrents sont littéralement à [http://www.stierlihof.ch/hofladen/weine/define.asp Nike Air Max] portée de clic, riches manchettes de mots clés si forts et contenu formidable aideront à convertir les visiteurs en acheteurs. <br><br>Nous testons en interne jusqu'à ce que nous nous sentons toutes les fonctionnalités du site ont été conservés, aucune donnée n'a été perdue, et le nouveau site est suffisamment robuste pour aller vivre, je l'espère un peu de temps en Novembre. Sur l'icône, vous devriez voir le mot "file d'attente" avec une barre en dessous. <br><br>Samedi, j'ai rempli une carte de commentaires et j'ai appelé le centre de loisirs dès lundi matin pour parler au directeur de la piscine. Il a déménagé à Saint-Pétersbourg et est devenu un révolutionnaire professionnel. Une excellente approche pour en apprendre davantage sur l'optimisation de la page off est tout simplement en allant à autant d'ateliers et des séminaires sur le marketing des moteurs de recherche que possible. <br><br>INVESTISSEURS: Deutsche Börse et NYSE Euronext ont fait beaucoup de l'efficacité à être [http://www.elektrosmets.be/printable/assets/header.asp Hollister Anvers] arrachées [http://www.jubla-so.ch/scripts/images/simple.asp Vibram Suisse] de la combinaison de leurs marchés, et la transparence améliorée à la disposition des chiens de garde du marché. Si vous postez ici, ne postez pas là. Initialement concentrée au centre-ville le long de Pennsylvania Avenue, Chinatown propose plusieurs blocs au nord pour faire place à l'achèvement du complexe de bureaux Triangle fédéral dans les années 1930. <br><br>Après la planification, la recherche et la conception, l'ensemble du projet a pris quatre semaines. C'est une bonne idée de commencer avec "sait quoi, pourquoi ne pas [http://www.opzrekem.be/scripts/search/editor.asp Michael Kors Bruxelles] aller trouver (sa maman / papa / tuteur) et nous pouvons tous parler de la raison pour laquelle X n'est pas ici". <br><br>Sérieusement, la plupart des amateurs de bricolage et les constructeurs achètent seulement UPE détail, cartes mères et cartes graphiques. Je viens de formation, debout à la plate-forme en bois, flottant sur la rivière du démon Village. Ils connaissent nos NOM. <br><br>99% sûr que je ne suis pas enceinte''. La région où j'habite a une petite localité de adjecent peuplée par une trentaine de personnes bizarres (femmes includung et childern) vivant dans environ neuf maisons. (Note de la courbe dans le bas du dos / lombaire) Le haut du corps devrait soulever juste assez pour arriver à ce point.<ul>
==Alternative unit systems==
 
{{main|Centimetre gram second system of units#Alternative ways of deriving CGS units in electromagnetism|l1=Alternative CGS units in electromagnetism}}
  <li>[http://www.polyhb.com/bbs/showtopic-500806.aspx http://www.polyhb.com/bbs/showtopic-500806.aspx]</li>
The main alternative to the Gaussian unit system is [[International System of Units|SI units]], historically also called the [[MKS system of units|MKSA system of units]] for metre–kilogram–second–ampere.<ref name=Rowlett/>
 
 
  <li>[http://team-impressive.de/index.php?site=news_comments&newsID=148 http://team-impressive.de/index.php?site=news_comments&newsID=148]</li>
The Gaussian unit system is just one of several electromagnetic unit systems within CGS. Others include "[[Centimetre gram second system of units#Electrostatic units (ESU)|electrostatic units]]", "[[Centimetre gram second system of units#Electromagnetic units (EMU)|electromagnetic units]]", and [[Lorentz–Heaviside units]].  
 
 
  <li>[http://www.bissogaleto.it/e107_plugins/forum/forum_viewtopic.php?72881.last http://www.bissogaleto.it/e107_plugins/forum/forum_viewtopic.php?72881.last]</li>
Some other unit systems are called "[[natural units]]", a category that includes [[atomic units]], [[Planck units]], and others.
 
 
  <li>[http://nntpdirect.com/public-nntp-server/profile.php?id=319706 http://nntpdirect.com/public-nntp-server/profile.php?id=319706]</li>
SI units are by far the most common today. In [[engineering]] and practical areas, SI is near-universal and has been for decades,<ref name=Rowlett>[http://www.unc.edu/~rowlett/units/cgsmks.html "CGS"], in ''How Many? A Dictionary of Units of Measurement'', by Russ Rowlett and the University of North Carolina at Chapel Hill</ref> while in technical, scientific literature (such as [[theoretical physics]] and [[astronomy]]), Gaussian units were predominant until recent decades, but are now getting progressively less so.<ref name=Rowlett/><ref name=JacksonEditions>For example, one widely used graduate electromagnetism textbook is ''Classical Electrodynamics'' by J.D. Jackson. The second edition, published in 1975, used Gaussian units exclusively, but the third edition, published in 1998, uses mostly SI units. Similarly, ''Electricity and Magnetism'' by Edward Purcell is a popular undergraduate textbook. The second edition, published in 1984, used Gaussian units, while the third edition, published in 2013, switched to SI units.</ref>
 
 
  <li>[http://studysupport.biz/ http://studysupport.biz/]</li>
Natural units are most common in more theoretical and abstract fields of physics, particularly [[particle physics]] and [[string theory]].
 
 
</ul>
==Major differences between Gaussian and SI units==
 
==="Rationalized" unit systems===
 
One difference between Gaussian and SI units is in the factors of 4π in various formulas. SI electromagnetic units are called "rationalized",<ref name=Littlejohn>{{cite web | url=http://bohr.physics.berkeley.edu/classes/221/1112/notes/emunits.pdf | format=PDF | title=Gaussian, SI and Other Systems of Units in Electromagnetic Theory | work=Physics 221A, University of California, Berkeley lecture notes | author=Littlejohn, Robert | date=Fall 2011 | accessdate=2008-05-06 }}</ref><ref name=Kowalski>Kowalski, Ludwik, 1986, "[http://alpha.montclair.edu/~kowalskiL/SI/SI_PAGE.HTML A Short History of the SI Units in Electricity,]"  ''The Physics Teacher'' 24(2): 97–99. [http://dx.doi.org/10.1119/1.2341955 Alternate web link (subscription required)]</ref> because [[Maxwell's equations]] have no explicit factors of 4π in the formulae. On the other hand, the [[inverse-square law|inverse-square]] force laws, [[Coulomb's law]] and the [[Biot–Savart law]], ''do'' have a factor of 4π attached to the ''r''<sup>2</sup>. In ''unrationalized'' Gaussian units (not [[Lorentz–Heaviside units]]) the situation is reversed: Two of Maxwell's equations have factors of 4π in the formulas, while both of the inverse-square force laws, Coulomb's law and the Biot–Savart law, have no factor of 4π attached to ''r''<sup>2</sup> in the denominator.
 
(The quantity 4π appears because 4π''r''<sup>2</sup> is the surface area of the sphere of radius ''r''. For details, see the articles [[Gauss's law#Relation to Coulomb's law|Relation between Gauss's law and Coulomb's law]] and [[Inverse-square law]].)
 
===Unit of charge===
 
A major difference between Gaussian and SI units is in the definition of the unit of charge. In SI, a separate base unit (the [[ampere]]) is associated with electrical phenomena, with the consequence that something like electrical charge (1 [[coulomb]] = 1 ampere × 1 second) is a unique dimension of physical quantity and is not expressed purely in terms of the mechanical units (kilogram, metre, second). On the other hand, in Gaussian units, the unit of electrical charge (the [[statcoulomb]], statC) ''can'' be written entirely as a dimensional combination of the mechanical units (gram, centimetre, second), as:
:1 statC = 1 g<sup>1/2</sup> cm<sup>3/2</sup> s<sup>−1</sup>
 
For example, [[Coulomb's law]] in Gaussian units appears simple:
:<math>F = \frac{Q_1Q_2}{r^2}</math>
where ''F'' is the repulsive force between two electrical charges, ''Q''<sub>1</sub> and ''Q''<sub>2</sub> are the two charges in question, and ''r'' is the distance separating them. If ''Q''<sub>1</sub> and ''Q''<sub>2</sub> are expressed in [[statC]] and ''r'' in [[centimetre|cm]], then ''F'' will come out expressed in [[dyne]].
 
By contrast, the same law in SI units is:
:<math>F = \frac{1}{4\pi\epsilon_0} \frac{Q_1Q_2}{r^2}</math>
where ''ε''<sub>0</sub> is the [[vacuum permitivity]], a quantity with ''dimension'', namely ([[electric charge|charge]])<sup>2</sup> ([[time]])<sup>2</sup> ([[mass]])<sup>−1</sup> ([[length]])<sup>−3</sup>. Without ''ε''<sub>0</sub>, the two sides could not have consistent dimensions in SI, and in fact the quantity ''ε''<sub>0</sub> does not even exist in Gaussian units. This is an example of how some dimensional [[physical constant]]s can be eliminated from the expressions of [[physical law]] simply by the judicious choice of units.  In SI, 1/''ε''<sub>0</sub>, converts or scales [[Electric displacement field|flux density]], '''D''', to [[electric field]], '''E''' (the latter has dimension of [[force]] per [[electric charge|charge]]), while in ''rationalized'' Gaussian units, flux density ''is'' the very same as electric field in [[free space]], not just a scaled copy.
 
Since the unit of charge is built out of mechanical units (mass, length, time), the relation between mechanical units and  electromagnetic phenomena is clearer in Gaussian units than in SI. In particular, in Gaussian units, the [[speed of light]] ''c'' shows up directly in electromagnetic formulas like [[Maxwell's equations]] (see below), whereas in SI it only shows up implicitly via the relation <math>\mu_0 \epsilon_0=1/c^2</math>.
 
===Units for magnetism===
 
In Gaussian units, unlike SI units, the electric field '''E''' and the [[magnetic field|magnetic field '''B''']] have the same dimension. This amounts to a factor of ''[[speed of light|c]]'' difference between how '''B''' is defined in the two unit systems, on top of the other differences.<ref name=Littlejohn/> (The same factor applies to other magnetic quantities such as '''[[magnetic field|H]]''' and '''[[magnetization|M]]'''.) For example, in a [[Sinusoidal plane-wave solutions of the electromagnetic wave equation|planar light wave in vacuum]], |'''E'''('''r''',''t'')|=|'''B'''('''r''',''t'')| in Gaussian units, while  |'''E'''('''r''',''t'')|=''c''|'''B'''('''r''',''t'')| in SI units.
 
===Polarization, magnetization===
 
There are further differences between Gaussian and SI units in how quantities related to polarization and magnetization are defined. For one thing, in Gaussian units, ''all'' of the following quantities have the same dimension: '''[[electric field|E]]''', '''[[electric displacement field|D]]''', '''[[polarization density|P]]''', [[magnetic field|'''B''', '''H''']], and '''[[magnetization|M]]'''. Another important point is that the [[electric susceptibility|electric]] and [[magnetic susceptibility]] of a material is dimensionless in both Gaussian and SI units, but a given material will have a different numerical susceptibility in the two systems. (Equation is given below.)
 
==List of equations==
 
This section has a list of the basic formulae of electromagnetism, given in both Gaussian and SI units. Most symbol names are not given; for complete explanations and definitions, please click to the appropriate dedicated article for each equation. All formulas except otherwise noted are from Ref.<ref name=Littlejohn/>
 
===Maxwell's equations===
{{main|Maxwell's equations}}
 
Here are Maxwell's equations, both in macroscopic and microscopic forms. Only the "differential form" of the equations is given, not the "integral form"; to get the integral forms apply the [[divergence theorem]] or [[Stokes' theorem|Kelvin–Stokes theorem]].
 
{| class="wikitable" cellpadding="8"
|-
!Name
!Gaussian units
!SI units
|-
| [[Gauss's law]]<br />(macroscopic)
| <math>\nabla \cdot \mathbf{D} = 4\pi\rho_\text{f}</math>
| <math>\nabla \cdot \mathbf{D} = \rho_\text{f}</math>
|-
| [[Gauss's law]]<br />(microscopic)
| <math>\nabla \cdot \mathbf{E} = 4\pi\rho</math>
| <math>\nabla \cdot \mathbf{E} = \rho/\epsilon_0</math>
|-
| [[Gauss's law for magnetism]]:
|<math>\nabla \cdot \mathbf{B} = 0</math>   
|<math>\nabla \cdot \mathbf{B} = 0</math>   
|-
| Maxwell–Faraday equation<br />([[Faraday's law of induction]]):
| <math>\nabla \times \mathbf{E} = -\frac{1}{c}\frac{\partial \mathbf{B}} {\partial t}</math>   
| <math>\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}} {\partial t}</math>   
|-
| [[Ampère–Maxwell equation]]<br /> (macroscopic):
| <math>\nabla \times \mathbf{H} = \frac{4\pi}{c}\mathbf{J}_\text{f} + \frac{1}{c}\frac{\partial \mathbf{D}} {\partial t}</math>
| <math>\nabla \times \mathbf{H} = \mathbf{J}_\text{f} + \frac{\partial \mathbf{D}} {\partial t}</math>
|-
| [[Ampère–Maxwell equation]]<br /> (microscopic):
| <math>\nabla \times \mathbf{B} = \frac{4\pi}{c}\mathbf{J} + \frac{1}{c}\frac{\partial \mathbf{E}} {\partial t}</math>
| <math>\nabla \times \mathbf{B} = \mu_0\mathbf{J} + \frac{1}{c^2}\frac{\partial \mathbf{E}} {\partial t}</math>
|}
 
===Other basic laws===
 
{| class="wikitable" cellpadding="8"
|-
!Name
!Gaussian units
!SI units
|-
| [[Lorentz force]]
| <math>\mathbf{F} = q\left(\mathbf{E}+\frac{1}{c}\mathbf{v}\times\mathbf{B}\right)</math>
| <math>\mathbf{F} = q\left(\mathbf{E}+\mathbf{v}\times\mathbf{B}\right)</math>
|-
| [[Coulomb's law]]
| <math>\mathbf{F} = \frac{q_1 q_2}{r^2} \mathbf{\hat r}</math>
| <math>\mathbf{F} = \frac{1}{4\pi\epsilon_0}\frac{q_1 q_2}{r^2} \mathbf{\hat r}</math> <br />
|-
| Electric field of<br />[[Coulomb's law|stationary point charge]]
| <math>\mathbf{E} = \frac{q}{r^2} \mathbf{\hat r}</math>
| <math>\mathbf{E} = \frac{1}{4\pi\epsilon_0}\frac{q}{r^2} \mathbf{\hat r}</math>
|-
| [[Biot–Savart law]]
| <math> \mathbf{B} = \frac{1}{c} \oint\frac{I d\mathbf{l} \times \mathbf{\hat r}}{r^2}</math>
| <math> \mathbf{B} = \frac{\mu_0}{4\pi} \oint\frac{I d\mathbf{l} \times \mathbf{\hat r}}{r^2}</math>
|}
 
===Dielectric and magnetic materials===
 
Below are the expressions for the various fields in a dielectric medium. It is assumed here for simplicity that the medium is homogeneous, linear, isotropic, and nondispersive, so that the [[permittivity]] is a simple constant.
{| class="wikitable" cellpadding="8"
|-
!Gaussian units
!SI units
|-
| <math>\mathbf{D} = \mathbf{E}+4\pi\mathbf{P}</math>
| <math>\mathbf{D} = \epsilon_0 \mathbf{E}+\mathbf{P}</math>
|-
| <math>\mathbf{P} = \chi_\text{e}\mathbf{E}</math>
| <math>\mathbf{P} = \chi_\text{e}\epsilon_0\mathbf{E}</math>
|-
| <math>\mathbf{D} = \epsilon\mathbf{E}</math>
| <math>\mathbf{D} = \epsilon\mathbf{E}</math>
|-
| <math>\epsilon = 1+4\pi\chi_\text{e}</math>
| <math>\epsilon/\epsilon_0 = 1+\chi_\text{e}</math>
|}
where
*'''E''' and '''D''' are the [[electric field]] and [[Electric displacement field|displacement field]], respectively;
*'''P''' is the [[polarization density]];
*<math>\epsilon</math> is the [[permittivity]];
*<math>\epsilon_0</math> is the [[permittivity of vacuum]] (used in the SI system, but meaningless in Gaussian units);
*<math>\chi_\text{e}</math> is the [[electric susceptibility]]
 
The quantities <math>\epsilon</math> in Gaussian units and <math>\epsilon/\epsilon_0</math> in SI are both dimensionless, and they have the same numeric value. By contrast, the [[electric susceptibility]] <math>\chi_e</math> is unitless in both systems, but has ''different numeric values'' in the two systems for the same material:
::<math>\chi_\text{e}^\text{SI} = 4\pi \chi_\text{e}^\text{G}</math>
 
Next, here are the expressions for the various fields in a magnetic medium. Again, it is assumed that the medium is homogeneous, linear, isotropic, and nondispersive, so that the [[Permeability (electromagnetism)|permeability]] is a simple constant.
 
{| class="wikitable" cellpadding="8"
|-
!Gaussian units
!SI units
|-
| <math>\mathbf{B} = \mathbf{H}+4\pi\mathbf{M}</math>
| <math>\mathbf{B} = \mu_0 (\mathbf{H}+\mathbf{M})</math>
|-
|<math>\mathbf{M} = \chi_\text{m}\mathbf{H}</math>
|<math>\mathbf{M} = \chi_\text{m}\mathbf{H}</math>
|-
| <math>\mathbf{B} = \mu\mathbf{H}</math>
| <math>\mathbf{B} = \mu\mathbf{H}</math>
|-
| <math>\mu = 1+4\pi\chi_\text{m}</math>
| <math>\mu/\mu_0 = 1+\chi_\text{m}</math>
|}
where
*'''B''' and '''H''' are the [[magnetic field]]s
*'''M''' is [[magnetization]]
*<math>\mu</math> is [[magnetic permeability]]
*<math>\mu_0</math> is the [[permeability of vacuum]] (used in the SI system, but meaningless in Gaussian units);
*<math>\chi_\text{m}</math> is the [[magnetic susceptibility]]
 
The quantities <math>\mu</math> in Gaussian units and <math>\mu/\mu_0</math> in SI are both dimensionless, and they have the same numeric value. By contrast, the [[magnetic susceptibility]] <math>\chi_\text{m}</math> is unitless in both systems, but has ''different numeric values'' in the two systems for the same material:
::<math>\chi_\text{m}^\text{SI} = 4\pi \chi_\text{m}^\text{G}</math>
 
===Vector and scalar potentials===
{{main|Magnetic vector potential|Electric potential}}
 
The electric and magnetic fields can be written in terms of a vector potential '''A''' and a scalar potential φ:
 
{| class="wikitable" cellpadding="8"
|-
!Name
!Gaussian units
!SI units
|-
| [[Electric field]]<br />(static)
| <math>\mathbf{E} = -\nabla\phi</math>
| <math>\mathbf{E} = -\nabla\phi</math>
|-
| [[Electric field]]<br />(general)
| <math>\mathbf{E} = -\nabla\phi-\frac{1}{c}\frac{\partial \mathbf{A}}{\partial t}</math>
| <math>\mathbf{E} = -\nabla\phi-\frac{\partial \mathbf{A}}{\partial t}</math>
|-
| [[Magnetic field|Magnetic '''B''' field]]
| <math>\mathbf{B} = \nabla \times \mathbf{A}</math>
| <math>\mathbf{B} = \nabla \times \mathbf{A}</math>
|}
 
==Electromagnetic unit names==
 
(For non-electromagnetic units, see [[Centimetre gram second system of units|main cgs article]].)
 
{| class="wikitable"
|+ Conversion of SI units in electromagnetism to Gaussian subsystem of CGS<ref name=cardsgc>{{cite book
| author = Cardarelli, F.
| year = 2004
| title = Encyclopaedia of Scientific Units, Weights and Measures: Their SI Equivalences and Origins
| publisher = Springer
| edition = 2nd
| pages = 20–25
| isbn= 1-85233-682-X
| url= http://books.google.com/books?id=6KCx8Ww75VkC
}}</ref><br>''c'' = 29,979,245,800 ≈ 3·10<sup>10</sub>
! Quantity
! Symbol !! SI unit !! Gaussian unit
|-
! [[electric charge]]
| style="text-align:center;"| ''q'' || 1 [[Coulomb|C]] || ↔ (10<sup>−1</sup> ''c'')  [[Statcoulomb|Fr]]
|-
! [[electric current]]
| style="text-align:center;"| ''I'' || 1 [[Ampere|A]] || ↔ (10<sup>−1</sup> ''c'')  [[Statcoulomb|Fr]]/s
|-
! [[electric potential]]<br>[[voltage]]
| style="text-align:center;"|''φ''<br>''V''|| 1 [[Volt|V]]|| ↔ (10<sup>8</sup> ''c''<sup>−1</sup>) [[statvolt|statV]]
|-
! [[electric field]]
| style="text-align:center;"|'''E'''|| 1 [[Volt|V]]/[[Metre|m]] || ↔ (10<sup>6</sup> ''c''<sup>−1</sup>) [[statvolt|statV]]/[[Centimetre|cm]]
|-
! [[magnetic induction]]
| style="text-align:center;"|'''B'''|| 1 [[tesla (unit)|T]] || ↔ (10<sup>4</sup>) [[Gauss (unit)|Gs]]
|-
! [[magnetic field strength]]
| style="text-align:center;"|'''H'''|| 1 [[Ampere|A]]/[[Metre|m]] || ↔ (4π 10<sup>−3</sup>) [[oersted|Oe]]
|-
! [[magnetic dipole moment]]
| style="text-align:center;"|'''μ'''|| 1 [[Ampere|A]]·[[Square metre|m²]] || ↔ (10<sup>3</sup>) [[erg]]/[[Gauss (unit)|Gs]] 
|-
! [[magnetic flux]]
| style="text-align:center;"|''Φ''<sub>m</sub>|| 1 [[Weber (unit)|Wb]]||  ↔ (10<sup>8</sup>) [[Gauss (unit)|Gs]]·cm²
|-
! [[electrical resistance|resistance]]
| style="text-align:center;"|''R''|| 1 [[Ohm|Ω]] || ↔ (10<sup>9</sup> ''c''<sup>−2</sup>)  [[Second|s]]/[[Centimetre|cm]]
|-
! [[electrical resistivity|resistivity]]
| style="text-align:center;"|''ρ'' || 1 [[Ohm|Ω]]·[[Metre|m]] || ↔ (10<sup>11</sup> ''c''<sup>−2</sup>)  [[Second|s]]
|-
! [[capacitance]]
| style="text-align:center;"|''C''|| 1 [[Farad|F]] || ↔ (10<sup>−9</sup> ''c''<sup>2</sup>)  [[Centimetre|cm]]
|-
! [[inductance]]
| style="text-align:center;"|''L''|| 1 [[Henry (unit)|H]] || ↔ (10<sup>9</sup> ''c''<sup>−2</sup>) [[Second|s]]<sup>2</sup>/[[Centimetre|cm]]
|}
 
In this table, the letter ''c'' represents the number 29,979,245,800 ≈ 3·10<sup>10</sub>, the numerical value of the [[speed of light]] expressed in cm/s. The symbol "↔" was used instead of "=" as a reminder that the SI and Gaussian units are ''corresponding'' but not ''equal'' because they have incompatible dimensions. For example, according to the top row of the table, something with a charge of 1 [[Coulomb|C]] also has a charge of (10<sup>−1</sup> ''c'') [[Statcoulomb|Fr]], ''but'' it is usually incorrect to replace "1 C" with "(10<sup>−1</sup> ''c'') Fr" within an equation or formula, unless all other units in the formula are also replaced by their Gaussian equivalents.
 
It is surprising to think of measuring capacitance in centimetres. One useful example is that a centimetre of capacitance is the capacitance between a sphere of radius 1&nbsp;cm in vacuum and infinity.
 
Another surprising unit is measuring [[resistivity]] in units of seconds. A physical example is: Take a [[parallel-plate capacitor]], which has a "leaky" dielectric with permittivity 1 but a finite resistivity. After charging it up, the capacitor will discharge itself over time, due to current leaking through the dielectric. If the resistivity of the dielectric is "X" seconds, the half-life of the discharge is ~0.05X seconds.<!-- 0.05 ~ ln(2)/(4pi) --> This result is independent of the size, shape, and charge of the capacitor, and therefore this example illuminates the fundamental connection between resistivity and time units.
 
===Dimensionally equivalent units===
A number of the units defined by the table have different names but are in fact dimensionally equivalent—i.e., they have the same expression in terms of the base units cm, g, s. (This is analogous to the distinction in SI between [[becquerel]] and [[Hertz|Hz]], or between [[newton metre]] and [[joule]].) The different names help avoid ambiguities and misunderstandings as to what physical quantity is being measured. In particular, ''all'' of the following quantities are dimensionally equivalent in Gaussian units, but they are nevertheless given different unit names as follows:<ref>{{cite book|url=http://books.google.com/books?id=CQMsK5xW1DcC&pg=PA155 |title='&#39;Demystifying Electromagnetic Equations'&#39;|page=155|publisher=Books.google.com |date= |accessdate=2012-12-25}}</ref>
 
{| class="wikitable"
|-
! Quantity
! In Gaussian<br />base units
! Gaussian unit<br />of measure
|-
| '''[[electric field|E]]'''
| cm<sup>−1/2</sup> g<sup>1/2</sup> s<sup>−1</sup>
| [[statV]]/cm
|-
| '''[[electric displacement field|D]]'''
| cm<sup>−1/2</sup> g<sup>1/2</sup> s<sup>−1</sup>
| [[statC]]/cm<sup>2</sup>
|-
| '''[[polarization density|P]]'''
| cm<sup>−1/2</sup> g<sup>1/2</sup> s<sup>−1</sup>
| [[statC]]/cm<sup>2</sup>
|-
| '''[[magnetic field|B]]'''
| cm<sup>−1/2</sup> g<sup>1/2</sup> s<sup>−1</sup>
| [[Gauss (unit)|Gs]]
|-
| '''[[magnetic field|H]]'''
| cm<sup>−1/2</sup> g<sup>1/2</sup> s<sup>−1</sup>
| [[Oersted|Oe]]
|-
| '''[[magnetization|M]]'''
| cm<sup>−1/2</sup> g<sup>1/2</sup> s<sup>−1</sup>
| [[Maxwell (unit)|Mx]]/cm<sup>2</sup><br />or emu/cm<sup>3</sup><br /><ref>Despite this usage, "emu" on its own is not a unit; see [http://books.google.com/books?id=kTnxSi2B2FcC&pg=PT46 CRC handbook of chemistry and physics]</ref>
|}
 
==General rules to translate a formula==
 
To convert any formula from Gaussian units to SI units, replace the quantity in the Gaussian column by the quantity in the SI column (vice-versa to convert the other way). This will reproduce any of the specific formulas given in the list above, such as Maxwell's equations, as well as any other formula not listed.<ref>[http://fatcat.ftj.agh.edu.pl/~bartekw/downloads/units_eld.pdf lecture notes on units in electrodynamics]{{dead link|date=December 2012}}</ref><ref>{{cite book | author=Бредов М.М., Румянцев В.В., Топтыгин И.Н.  | title=Классическая электродинамика| publisher=[[Nauka (publisher)|Nauka]] |year=1985  | chapter=Appendix 5: Units transform (p.385)}}</ref> It may also be necessary to use the relation <math>\mu_0\epsilon_0 = 1/c^2</math> to simplify. For some examples of how to use this table, see:<ref>[http://www.qsl.net/g4cnn/units/units.htm Units in Electricity and Magnetism]. See the section "Conversion of Gaussian formulae into SI" and the subsequent text.</ref>
 
{| class="wikitable" cellpadding="8"
|-
!Name
!Gaussian units
!SI units
|-
| [[Electric field]], [[Electric potential]]
| <math> \left(\mathbf{E}, \varphi\right) </math>
| <math> \sqrt{4\pi\varepsilon_0}\left(\mathbf{E}, \varphi\right) </math>
|-
| [[Electric displacement field]]
| <math> \mathbf{D} </math>
| <math> \sqrt{\frac{4\pi}{\varepsilon_0}}\mathbf{D} </math>
|-
| [[charge (physics)|Charge]], [[Charge density]], [[Electric current|Current]],<br />[[Current density]], [[Polarization density]],<br />[[Electric dipole moment]]
| <math> \left(q, \rho, I, \mathbf{J},\mathbf{P}, \mathbf{p}\right) </math>
| <math> \frac{1}{\sqrt{4\pi\varepsilon_0}}\left(q, \rho, I, \mathbf{J},\mathbf{P},\mathbf{p}\right) </math>
|-
| [[Magnetic field|Magnetic '''B''' field]], [[Magnetic flux]],<br />[[Magnetic vector potential]]
| <math> \left(\mathbf{B}, \Phi_\text{m},\mathbf{A}\right) </math>
| <math> \sqrt{\frac{4\pi}{\mu_0}}\left(\mathbf{B}, \Phi_\text{m},\mathbf{A}\right) </math>
|-
| [[Magnetic field|Magnetic '''H''' field]]
| <math> \mathbf{H} </math>
| <math> \sqrt{4\pi\mu_0}\mathbf{H} </math>
|-
| [[Magnetic moment]], [[Magnetization]]
| <math> \left(\mathbf{m}, \mathbf{M}\right) </math>
| <math> \sqrt{\frac{\mu_0}{4\pi}}\left(\mathbf{m}, \mathbf{M}\right) </math>
|-
| [[Relative permittivity]],<br />Relative [[permeability (electromagnetism)|permeability]]
| <math> \left(\varepsilon, \mu\right) </math>
| <math> \left(\varepsilon_\text{r}, \mu_\text{r}\right) \equiv \left(\frac{\varepsilon}{\varepsilon_0}, \frac{\mu}{\mu_0}\right)</math>
|-
| [[Electric susceptibility]],<br />[[Magnetic susceptibility]]
| <math> \left(\chi_\text{e}, \chi_\text{m}\right) </math>
| <math> \frac{1}{4\pi}\left(\chi_\text{e}, \chi_\text{m}\right) </math>
|-
| [[Electrical conductivity|Conductivity]], [[Electrical conductance|Conductance]], [[Capacitance]]
| <math> \left(\sigma, S, C\right) </math>
| <math> \frac{1}{4\pi\varepsilon_0}\left(\sigma,S,C\right) </math>
|-
| [[Resistivity]], [[electrical resistance|Resistance]], [[Inductance]]
| <math> \left(\rho,R,L\right) </math>
| <math> 4\pi\varepsilon_0\left(\rho,R,L\right) </math>
|}
 
==Notes and references==
{{reflist|30em}}
 
==External links==
*[http://www.pgccphy.net/1030/gaussian.html Comprehensive list of Gaussian unit names, and their expressions in base units]
*[http://www.gsjournal.net/old/science/danescu.pdf The evolution of the Gaussian Units] by Dan Petru Danescu
 
<!--initial space in sorting is significant-->
 
{{DEFAULTSORT:Gaussian Units}}
[[Category:Centimetre–gram–second system of units]]
[[Category:Systems of units]]

Revision as of 23:41, 3 February 2014

Carl Gauss

Gaussian units comprise a metric system of physical units. This system is the most common of the several electromagnetic unit systems based on cgs (centimetre–gram–second) units. It is also called the Gaussian unit system, Gaussian-cgs units, or often just cgs units.[1] The term "cgs units" is ambiguous and therefore to be avoided if possible: cgs contains within it several conflicting sets of electromagnetism units, not just Gaussian units, as described below.

The most common alternative to Gaussian units are SI units. SI units are predominant in most fields, and continue to increase in popularity at the expense of Gaussian units.[2][3] (Other alternative unit systems also exist, as discussed below.) Conversions between Gaussian units and SI units are not as simple as normal unit conversions. For example, the formulas for physical laws of electromagnetism (such as Maxwell's equations) need to be adjusted depending on what system of units one uses. As another example, quantities that are dimensionless (loosely "unitless") in one system may have dimension in another.

History

Gaussian units existed before the CGS system. The British Association report of 1873 that proposed the CGS contains gaussian units derived from the foot–grain–second and metre–gram–second as well. There are also references to foot–pound–second gaussian units.

Alternative unit systems

Mining Engineer (Excluding Oil ) Truman from Alma, loves to spend time knotting, largest property developers in singapore developers in singapore and stamp collecting. Recently had a family visit to Urnes Stave Church. The main alternative to the Gaussian unit system is SI units, historically also called the MKSA system of units for metre–kilogram–second–ampere.[2]

The Gaussian unit system is just one of several electromagnetic unit systems within CGS. Others include "electrostatic units", "electromagnetic units", and Lorentz–Heaviside units.

Some other unit systems are called "natural units", a category that includes atomic units, Planck units, and others.

SI units are by far the most common today. In engineering and practical areas, SI is near-universal and has been for decades,[2] while in technical, scientific literature (such as theoretical physics and astronomy), Gaussian units were predominant until recent decades, but are now getting progressively less so.[2][3]

Natural units are most common in more theoretical and abstract fields of physics, particularly particle physics and string theory.

Major differences between Gaussian and SI units

"Rationalized" unit systems

One difference between Gaussian and SI units is in the factors of 4π in various formulas. SI electromagnetic units are called "rationalized",[4][5] because Maxwell's equations have no explicit factors of 4π in the formulae. On the other hand, the inverse-square force laws, Coulomb's law and the Biot–Savart law, do have a factor of 4π attached to the r2. In unrationalized Gaussian units (not Lorentz–Heaviside units) the situation is reversed: Two of Maxwell's equations have factors of 4π in the formulas, while both of the inverse-square force laws, Coulomb's law and the Biot–Savart law, have no factor of 4π attached to r2 in the denominator.

(The quantity 4π appears because 4πr2 is the surface area of the sphere of radius r. For details, see the articles Relation between Gauss's law and Coulomb's law and Inverse-square law.)

Unit of charge

A major difference between Gaussian and SI units is in the definition of the unit of charge. In SI, a separate base unit (the ampere) is associated with electrical phenomena, with the consequence that something like electrical charge (1 coulomb = 1 ampere × 1 second) is a unique dimension of physical quantity and is not expressed purely in terms of the mechanical units (kilogram, metre, second). On the other hand, in Gaussian units, the unit of electrical charge (the statcoulomb, statC) can be written entirely as a dimensional combination of the mechanical units (gram, centimetre, second), as:

1 statC = 1 g1/2 cm3/2 s−1

For example, Coulomb's law in Gaussian units appears simple:

where F is the repulsive force between two electrical charges, Q1 and Q2 are the two charges in question, and r is the distance separating them. If Q1 and Q2 are expressed in statC and r in cm, then F will come out expressed in dyne.

By contrast, the same law in SI units is:

where ε0 is the vacuum permitivity, a quantity with dimension, namely (charge)2 (time)2 (mass)−1 (length)−3. Without ε0, the two sides could not have consistent dimensions in SI, and in fact the quantity ε0 does not even exist in Gaussian units. This is an example of how some dimensional physical constants can be eliminated from the expressions of physical law simply by the judicious choice of units. In SI, 1/ε0, converts or scales flux density, D, to electric field, E (the latter has dimension of force per charge), while in rationalized Gaussian units, flux density is the very same as electric field in free space, not just a scaled copy.

Since the unit of charge is built out of mechanical units (mass, length, time), the relation between mechanical units and electromagnetic phenomena is clearer in Gaussian units than in SI. In particular, in Gaussian units, the speed of light c shows up directly in electromagnetic formulas like Maxwell's equations (see below), whereas in SI it only shows up implicitly via the relation .

Units for magnetism

In Gaussian units, unlike SI units, the electric field E and the magnetic field B have the same dimension. This amounts to a factor of c difference between how B is defined in the two unit systems, on top of the other differences.[4] (The same factor applies to other magnetic quantities such as H and M.) For example, in a planar light wave in vacuum, |E(r,t)|=|B(r,t)| in Gaussian units, while |E(r,t)|=c|B(r,t)| in SI units.

Polarization, magnetization

There are further differences between Gaussian and SI units in how quantities related to polarization and magnetization are defined. For one thing, in Gaussian units, all of the following quantities have the same dimension: E, D, P, B, H, and M. Another important point is that the electric and magnetic susceptibility of a material is dimensionless in both Gaussian and SI units, but a given material will have a different numerical susceptibility in the two systems. (Equation is given below.)

List of equations

This section has a list of the basic formulae of electromagnetism, given in both Gaussian and SI units. Most symbol names are not given; for complete explanations and definitions, please click to the appropriate dedicated article for each equation. All formulas except otherwise noted are from Ref.[4]

Maxwell's equations

Mining Engineer (Excluding Oil ) Truman from Alma, loves to spend time knotting, largest property developers in singapore developers in singapore and stamp collecting. Recently had a family visit to Urnes Stave Church.

Here are Maxwell's equations, both in macroscopic and microscopic forms. Only the "differential form" of the equations is given, not the "integral form"; to get the integral forms apply the divergence theorem or Kelvin–Stokes theorem.

Name Gaussian units SI units
Gauss's law
(macroscopic)
Gauss's law
(microscopic)
Gauss's law for magnetism:
Maxwell–Faraday equation
(Faraday's law of induction):
Ampère–Maxwell equation
(macroscopic):
Ampère–Maxwell equation
(microscopic):

Other basic laws

Name Gaussian units SI units
Lorentz force
Coulomb's law
Electric field of
stationary point charge
Biot–Savart law

Dielectric and magnetic materials

Below are the expressions for the various fields in a dielectric medium. It is assumed here for simplicity that the medium is homogeneous, linear, isotropic, and nondispersive, so that the permittivity is a simple constant.

Gaussian units SI units

where

The quantities in Gaussian units and in SI are both dimensionless, and they have the same numeric value. By contrast, the electric susceptibility is unitless in both systems, but has different numeric values in the two systems for the same material:

Next, here are the expressions for the various fields in a magnetic medium. Again, it is assumed that the medium is homogeneous, linear, isotropic, and nondispersive, so that the permeability is a simple constant.

Gaussian units SI units

where

The quantities in Gaussian units and in SI are both dimensionless, and they have the same numeric value. By contrast, the magnetic susceptibility is unitless in both systems, but has different numeric values in the two systems for the same material:

Vector and scalar potentials

Mining Engineer (Excluding Oil ) Truman from Alma, loves to spend time knotting, largest property developers in singapore developers in singapore and stamp collecting. Recently had a family visit to Urnes Stave Church.

The electric and magnetic fields can be written in terms of a vector potential A and a scalar potential φ:

Name Gaussian units SI units
Electric field
(static)
Electric field
(general)
Magnetic B field

Electromagnetic unit names

(For non-electromagnetic units, see main cgs article.)

Conversion of SI units in electromagnetism to Gaussian subsystem of CGS[6]
c = 29,979,245,800 ≈ 3·1010
Quantity Symbol SI unit Gaussian unit
electric charge q 1 C ↔ (10−1 c) Fr
electric current I 1 A ↔ (10−1 c) Fr/s
electric potential
voltage
φ
V
1 V ↔ (108 c−1) statV
electric field E 1 V/m ↔ (106 c−1) statV/cm
magnetic induction B 1 T ↔ (104) Gs
magnetic field strength H 1 A/m ↔ (4π 10−3) Oe
magnetic dipole moment μ 1 A· ↔ (103) erg/Gs
magnetic flux Φm 1 Wb ↔ (108) Gs·cm²
resistance R 1 Ω ↔ (109 c−2) s/cm
resistivity ρ 1 Ω·m ↔ (1011 c−2) s
capacitance C 1 F ↔ (10−9 c2) cm
inductance L 1 H ↔ (109 c−2) s2/cm

In this table, the letter c represents the number 29,979,245,800 ≈ 3·1010, the numerical value of the speed of light expressed in cm/s. The symbol "↔" was used instead of "=" as a reminder that the SI and Gaussian units are corresponding but not equal because they have incompatible dimensions. For example, according to the top row of the table, something with a charge of 1 C also has a charge of (10−1 c) Fr, but it is usually incorrect to replace "1 C" with "(10−1 c) Fr" within an equation or formula, unless all other units in the formula are also replaced by their Gaussian equivalents.

It is surprising to think of measuring capacitance in centimetres. One useful example is that a centimetre of capacitance is the capacitance between a sphere of radius 1 cm in vacuum and infinity.

Another surprising unit is measuring resistivity in units of seconds. A physical example is: Take a parallel-plate capacitor, which has a "leaky" dielectric with permittivity 1 but a finite resistivity. After charging it up, the capacitor will discharge itself over time, due to current leaking through the dielectric. If the resistivity of the dielectric is "X" seconds, the half-life of the discharge is ~0.05X seconds. This result is independent of the size, shape, and charge of the capacitor, and therefore this example illuminates the fundamental connection between resistivity and time units.

Dimensionally equivalent units

A number of the units defined by the table have different names but are in fact dimensionally equivalent—i.e., they have the same expression in terms of the base units cm, g, s. (This is analogous to the distinction in SI between becquerel and Hz, or between newton metre and joule.) The different names help avoid ambiguities and misunderstandings as to what physical quantity is being measured. In particular, all of the following quantities are dimensionally equivalent in Gaussian units, but they are nevertheless given different unit names as follows:[7]

Quantity In Gaussian
base units
Gaussian unit
of measure
E cm−1/2 g1/2 s−1 statV/cm
D cm−1/2 g1/2 s−1 statC/cm2
P cm−1/2 g1/2 s−1 statC/cm2
B cm−1/2 g1/2 s−1 Gs
H cm−1/2 g1/2 s−1 Oe
M cm−1/2 g1/2 s−1 Mx/cm2
or emu/cm3
[8]

General rules to translate a formula

To convert any formula from Gaussian units to SI units, replace the quantity in the Gaussian column by the quantity in the SI column (vice-versa to convert the other way). This will reproduce any of the specific formulas given in the list above, such as Maxwell's equations, as well as any other formula not listed.[9][10] It may also be necessary to use the relation to simplify. For some examples of how to use this table, see:[11]

Name Gaussian units SI units
Electric field, Electric potential
Electric displacement field
Charge, Charge density, Current,
Current density, Polarization density,
Electric dipole moment
Magnetic B field, Magnetic flux,
Magnetic vector potential
Magnetic H field
Magnetic moment, Magnetization
Relative permittivity,
Relative permeability
Electric susceptibility,
Magnetic susceptibility
Conductivity, Conductance, Capacitance
Resistivity, Resistance, Inductance

Notes and references

43 year old Petroleum Engineer Harry from Deep River, usually spends time with hobbies and interests like renting movies, property developers in singapore new condominium and vehicle racing. Constantly enjoys going to destinations like Camino Real de Tierra Adentro.

External links

  1. One of many examples of using the term "cgs units" to refer to Gaussian units is: Lecture notes from Stanford University
  2. 2.0 2.1 2.2 2.3 "CGS", in How Many? A Dictionary of Units of Measurement, by Russ Rowlett and the University of North Carolina at Chapel Hill
  3. 3.0 3.1 For example, one widely used graduate electromagnetism textbook is Classical Electrodynamics by J.D. Jackson. The second edition, published in 1975, used Gaussian units exclusively, but the third edition, published in 1998, uses mostly SI units. Similarly, Electricity and Magnetism by Edward Purcell is a popular undergraduate textbook. The second edition, published in 1984, used Gaussian units, while the third edition, published in 2013, switched to SI units.
  4. 4.0 4.1 4.2 Template:Cite web
  5. Kowalski, Ludwik, 1986, "A Short History of the SI Units in Electricity," The Physics Teacher 24(2): 97–99. Alternate web link (subscription required)
  6. 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.

    My blog: http://www.primaboinca.com/view_profile.php?userid=5889534
  7. 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.

    My blog: http://www.primaboinca.com/view_profile.php?userid=5889534
  8. Despite this usage, "emu" on its own is not a unit; see CRC handbook of chemistry and physics
  9. lecture notes on units in electrodynamicsTemplate:Dead link
  10. 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.

    My blog: http://www.primaboinca.com/view_profile.php?userid=5889534
  11. Units in Electricity and Magnetism. See the section "Conversion of Gaussian formulae into SI" and the subsequent text.