Givens rotation: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
en>Eigenguy
Stable calculation: corrected sign of s in the Anderson algorithm to match convention used in the rest of the page
 
en>BattyBot
m fixed CS1 errors: dates & General fixes using AWB (9816)
Line 1: Line 1:
== 「シープクリフの町警察署、町の警察リーは羊を結んだ ==
{{lowercase}}
{{DISPLAYTITLE:''h''-Cobordism}}
In [[geometric topology]] and [[differential topology]], an (''n''+1)-dimensional [[cobordism]] ''W'' between ''n''-dimensional [[manifold]]s ''M'' and ''N'' is an '''''h''-cobordism''' (the ''h'' stands for [[homotopy equivalence]]) if the inclusion maps


、笑う、これはそれがあまりにも若年特別なプレー [http://www.dmwai.com/webalizer/kate-spade-13.html ケイトスペード 人気バッグ]<br><br>「私自身、兄弟に行くためにあなたの目を引く、そして、あなたのアイデンティティ [http://www.dmwai.com/webalizer/kate-spade-9.html バッグ ケイトスペード]。彼に言った、「文の太陽Tianming轟音 [http://www.dmwai.com/webalizer/kate-spade-10.html ケイトスペード バッグ ショルダー]。<br><br>「シープクリフの町警察署、町の警察リーは羊を結んだ。 '<br><br>「郷警察、高兵士。 [http://www.dmwai.com/webalizer/kate-spade-15.html ケイトスペード アウトレット バッグ] '<br><br>「郷警察、陳Dajun。 '<br><br>数人の新聞名、本当に特大、聞いてdumbfoundingフラットGuodongは、これらの人々が高く、遠くの山から場所へ天皇、物品の言葉を理解していなかった余裕でしょう責めることはできないが、彼はすぐに再度沈んだと考えられている、だから、本当に既存のカウンターパートを奪還したい、人員を失っ小さく、同省は大きなを失う可能性があります。<br>「一つ屋根の下、顔を与え、Sunのチームは、生活が困難なものを作る [http://www.dmwai.com/webalizer/kate-spade-8.html ハンドバッグ ケイトスペード]。」:ソフト、ゆっくりとまっすぐ銃を、置く彼の口調を<br><br><br>は「私はデンに3チームを入れて今日の額装、クソ誰かが私に顔を与えることはできません?右、あなたが戻って、ああ、あなたが波紋以上のことを、この甥に直面与える......フラットGuodong、私は今、正式に犯罪やギャンブルを拘束していますあなたは...... '太陽Tianmingは、胸を膨らん歩い
: <math> M \hookrightarrow W \quad\mbox{and}\quad N \hookrightarrow W</math>
相关的主题文章:
<ul>
 
  <li>[http://www.1555666.net/home.php?mod=space&uid=13832&do=blog&quickforward=1&id=377414 http://www.1555666.net/home.php?mod=space&uid=13832&do=blog&quickforward=1&id=377414]</li>
 
  <li>[http://wnbsxdpf.org.cn/plus/feedback.php?aid=27 http://wnbsxdpf.org.cn/plus/feedback.php?aid=27]</li>
 
  <li>[http://www.xintai.org.cn/plus/feedback.php?aid=3 http://www.xintai.org.cn/plus/feedback.php?aid=3]</li>
 
</ul>


== 彼の怪我はなく、彼自身の傷を ==
are homotopy equivalences.


郡の主要なショックが割れた、母と息子の睡眠ケースを殺害した爆撃と郡は10年前に起こった、犠牲者は後に彼の妻の死を負担することができない大型トラックの中小企業経営者であり、痛み、そして亡命する [http://www.dmwai.com/webalizer/kate-spade-10.html ケイトスペード財布評判]。<br><br>真実はそこに浮上しそうです、、離婚しようとして挫折し、犯罪被害者にこの扇動である代わりに、傍若無人インターポールは彼を見つけ、起動すると、彼は会社役員の成功の少量を持っています [http://www.dmwai.com/webalizer/kate-spade-6.html ケイトスペード リボン バッグ]。インターポールの爆発共犯秘密ソリューションは手錠をかけられフード付きGuzhai郡を、バック護衛した後にお金が拘置所ラックに重い足枷ボディ、ほとんどの人間を着て、彼の本当の爆発の容疑者が逮捕されたさらさ強要として彼が変装した [http://www.dmwai.com/webalizer/kate-spade-3.html ケイトスペード 財布 新作]。<br>彼の怪我はなく、彼自身の傷を<br>、彼は有罪が、それは確かに彼自身のやっている、と彼は告白している [http://www.dmwai.com/webalizer/kate-spade-3.html ケイトスペード ショルダーバッグ]。<br>数多くの暗い隅、犯罪と犯罪との戦いはとてもシフトを継続していることを<br> [http://www.dmwai.com/webalizer/kate-spade-3.html 財布 kate spade]。<br>人々の<br>2種類の暗闇の中で生きている、二つの道は、ノーリターン、ノー終わりである.........<br>第89章前<br>ボリューム絶望
The '''''h''-cobordism theorem''' gives sufficient conditions for an ''h''-cobordism to be trivial, i.e., to be '''Cat'''-isomorphic to the cylinder ''M'' × [0, 1]. Here '''Cat''' refers to any of the categories of '''[[smooth manifold|smooth]]''', '''[[piecewise linear manifold|piecewise linear]]''', or '''[[topological manifold|topological]]''' manifolds.
相关的主题文章:
<ul>
 
  <li>[http://www.mommd.com/cgi-bin/ubb-cgi/ultimatebb.cgi http://www.mommd.com/cgi-bin/ubb-cgi/ultimatebb.cgi]</li>
 
  <li>[http://www.uberiku.com/yybbs/yybbs.cgi http://www.uberiku.com/yybbs/yybbs.cgi]</li>
 
  <li>[http://yifang.n155.nicdns.cn/plus/feedback.php?aid=244 http://yifang.n155.nicdns.cn/plus/feedback.php?aid=244]</li>
 
</ul>


== 特別な抗漏れ ==
The theorem was first proved by [[Stephen Smale]] for which he received the [[Fields Medal]] and is the fundamental result in the theory of high-dimensional manifolds. For a start, it almost immediately proves the [[Generalized Poincaré Conjecture]].


カー [http://www.dmwai.com/webalizer/kate-spade-9.html ケイトスペード リボン バッグ]。実際に、彼は実際に馬を実証するものから前進来ることができると彼は釣りは間違いなく次の家を出荷するようにたくさんのお金であることを見ることができました [http://www.dmwai.com/webalizer/kate-spade-4.html ケイトスペード バッグ 新作]。<br>これらの人は二つの数字は、元市の5人に1、高速の1と頻繁に接触して監視さ<br>、反対側がロックすることはできませんが、抗麻薬に応じて、警察は彼らを扱う長年の経験を持って、時間はトランザクションが近くになければならない...正確な時間のためにそれらをフォローしている人に加えて、それらの信号を追跡する、という瞬間の前に取引されるように...、もっと良い方法があるでしょう。<br>10時半<br>、遠く陝西省の抗薬部門の、そこに潜在的なバイヤーというメッセージを送って、送り出さ [http://www.dmwai.com/webalizer/kate-spade-0.html ハンドバッグ ケイトスペード].........<br><br>「確かに、今日における取引時、。 [http://www.dmwai.com/webalizer/kate-spade-8.html kate spade 財布 ゴールド] '<br><br>レイが2車は陝西省と山西省に沿って高速で移動している、情報を送信し、姉妹ユニットを指摘し、計算時間に応じて7から始まる、オリジナルの旅の5個に5時間を必要とし、地方の国境に近接しています。<br><br>「徐副会場ああ、それは数時間後、今日は最後の戦いであることをようで、、私たちは成り行きを見守る必要があります [http://www.dmwai.com/webalizer/kate-spade-9.html ケイトスペードバッグセール]。<br><br>特別な抗漏れ
==Background==
相关的主题文章:
Before Smale proved this theorem, mathematicians had got stuck trying to understand manifolds of dimension 3 or 4, and assumed that the higher-dimensional cases were even harder. The ''h''-cobordism theorem showed that (simply connected) manifolds of dimension at least 5 are much easier than those of dimension 3 or 4. The proof of the theorem depends on the "[[Whitney embedding theorem|Whitney trick]]" of [[Hassler Whitney]], which geometrically untangles homologically-tangled spheres of complementary dimension in a manifold of dimension >5. An informal reason why manifolds of dimension 3 or 4 are unusually hard is that [[4-manifold#Failure of the Whitney trick in dimension 4|the trick fails to work]] in lower dimensions, which have no room for untanglement.
<ul>
 
  <li>[http://www.pfb999.org/thread-197045-1-1.html http://www.pfb999.org/thread-197045-1-1.html]</li>
 
  <li>[http://www.sori.cn/plus/feedback.php?aid=214 http://www.sori.cn/plus/feedback.php?aid=214]</li>
 
  <li>[http://yuntour88.com/plus/feedback.php?aid=116 http://yuntour88.com/plus/feedback.php?aid=116]</li>
 
</ul>


== 謝ビングは尋ねた ==
==Precise statement of the ''h''-cobordism theorem==


ビットは、それが上がっている [http://www.dmwai.com/webalizer/kate-spade-5.html ケイトスペード 財布 セール]<br><br>'これはギャングの顔が基本的な脆弱ああを探します強制的に [http://www.dmwai.com/webalizer/kate-spade-7.html ケイトスペード バッグ 新作]?'曹亚杰道を。<br><br>が彼の関係ツリーを描いた、トップが青色チャムで愛人ウェン蘭が、ここでは太陽東洋、元中旗に加え、外部のいくつかのボディーガードであり、トラブルを巻き起こすする機能が表示されない、マウスも眉をひそめ見えた、告発されたと言った: [http://www.dmwai.com/webalizer/kate-spade-3.html ケイトスペード 財布 新作] 'この事業は無味ああのようなものです」<br>'あなたは何を意味するのですか [http://www.dmwai.com/webalizer/kate-spade-2.html ケイトスペード トートバッグ]?'<br>謝ビングは尋ねた。<br><br>「私が見た黒色が、この事業は勝者と敗者、数字だけか長い大きな利益の前に、通常は上の有料補償を稼ぐ寒さの組み合わせが存在している、利益は素晴らしい......と青ではありませんこの1上のチャム脚光も意図的なように見える方法を、収入の波を高めるために開いた村を着ていた? 'マウス奇妙な本格的。<br><br>「銃口の上に彼をプッシュされる罪、より意図的な、危険な場合は「ケラは言った。<br>'彼らは何であるかの略奪で競合していることを?'<br>Caoya傑奇妙。<br><br>「ネットギャンブルは、これは私が黒い試すことができます [http://www.dmwai.com/webalizer/kate-spade-4.html ケイトスペード 人気 財布]......の大部分である
Let ''n'' be at least 5 and let ''W'' be a compact (''n''+1)-dimensional ''h''-cobordism between ''M'' and ''N'' in the category '''Cat'''='''[[smooth manifold|Diff]]''', '''[[piecewise linear manifold|PL]]''', or '''[[topological manifold|Top]]''' such that ''W'', ''M'' and ''N'' are [[simply connected]], then ''W'' is '''Cat'''-isomorphic to ''M'' × [0, 1]. The isomorphism can be chosen to be the identity on ''M'' × {0}.
相关的主题文章:
 
<ul>
This means that the homotopy equivalence between M, W, and N is homotopic to a '''Cat'''-isomorphism.
 
 
  <li>[http://feixseo.com/forum.php?mod=viewthread&tid=42715 http://feixseo.com/forum.php?mod=viewthread&tid=42715]</li>
==Low dimensions==
 
For ''n'' = 4, the ''h''-cobordism theorem is true topologically (proved by [[Michael Freedman]] using a 4-dimensional Whitney trick) but is false PL and smoothly (as shown by [[Simon Donaldson]]).  
  <li>[http://cgi.gu-tara.com/cgi-bin/light/light.cgi http://cgi.gu-tara.com/cgi-bin/light/light.cgi]</li>
 
 
For ''n'' = 3, the ''h''-cobordism theorem for smooth manifolds has not been proved and, due to the [[Poincaré conjecture]], is equivalent to the hard open question of whether the 4-sphere has non-standard [[smooth structure]]s.
  <li>[http://www.couromoda.com/cgi-bin/portalcm/listaexpositor.cgi http://www.couromoda.com/cgi-bin/portalcm/listaexpositor.cgi]</li>
 
    
For ''n'' = 2, the ''h''-cobordism theorem<ref>In 3 dimensions and below, the categories are the same: '''Diff''' = '''PL''' = '''Top'''.</ref> is true – it is equivalent to the [[Poincaré conjecture]], which has been proved by [[Grigori Perelman]].
</ul>
 
For ''n'' = 1, ''h''-cobordism theorem is vacuously true, since there is no closed simply-connected 1-dimensional manifold.
 
For ''n'' = 0, the ''h''-cobordism theorem is trivially true: the interval is the only connected cobordism between connected 0-manifolds.
 
==A proof sketch==
A [[Cobordism#Morse functions|Morse function]] <math>f:W\to[a,b]</math> induces a [[handle decomposition]] of ''W'', i.e., if there is a single critical point of index ''k'' in <math>f^{-1}([c,c'])</math>, then the ascending cobordism <math>W_{c'}</math> is obtained from <math>W_c</math> by attaching a ''k''-handle. The goal of the proof is to find a handle decomposition with no handles at all so that integrating the non-zero gradient vector field of ''f'' gives the desired diffeomorphism to the trivial cobordism.
 
This is achieved through a series of techniques.
 
'''1) Handle Rearrangement'''
 
First, we want to rearrange all handles by order so that lower order handles are attached first. The question is thus when can we slide an ''i''-handle off of a ''j''-handle? This can be done by a radial isotopy so long as the ''i'' attaching sphere and the ''j'' belt sphere do not intersect. We thus want <math>(i-1)+(n-j)\leq\dim\partial W-1=n-1</math> which is equivalent to <math>i\leq j</math>.
 
We then define the handle chain complex <math>(C_*,\partial_*)</math> by letting <math>C_k</math> be the free abelian group on the ''k''-handles and defining <math>\partial_k:C_k\to C_{k-1}</math> by sending a ''k''-handle <math>h_{\alpha}^k</math> to <math>\sum_{\beta}<h_{\alpha}^k|h_{\beta}^{k-1}>h_{\beta}^{k-1}</math>, where <math><h_{\alpha}^k|h_{\beta}^{k-1}></math> is the intersection number of the ''k''-attaching sphere and the (''k''-1)-belt sphere.
 
'''2) Handle Cancellation'''
 
Next, we want to "cancel" handles. The idea is that attaching a ''k''-handle <math>h_{\alpha}^k</math> might create a hole that can be filled in by attaching a (''k''+1)-handle <math>h_{\beta}^{k+1}</math>. This would imply that <math>\partial_{k+1}h_{\beta}^{k+1}=\pm h_{\alpha}^k</math> and so the <math>(\alpha,\beta)</math> entry in the matrix of <math>\partial_{k+1}</math> would be <math>\pm 1</math>. However, when is this condition sufficient? That is, when can we geometrically cancel handels if this condition is true? The answer lies in carefully analyzing when the manifold remains simply-connected after removing the attaching and belt spheres in question, and finding an embedded disk using the [[Whitney embedding theorem|Whitney trick]]. This analysis leads to the requirement that ''n'' must be at least 5. Moreover, during the proof one requires that the cobordism has no 0-,1-,''n''-, or ''(n+1)''-handles which is obtained by the next technique.
 
'''3) Handle Trading'''
 
The idea of handle trading is to create a cancelling pair of (''k''+1)- and (''k''+2)-handles so that a given ''k''-handle cancels with the (''k''+1)-handle leaving behind the (''k''+2)-handle. To do this, consider the core of the ''k''-handle which is an element in <math>\pi_k(W,M)</math>. This group is trivial since ''W'' is an ''h''-cobordism. Thus, there is a disk <math>D^{k+1}</math> which we can fatten to a cancelling pair as desired, so long as we can embed this disk into the boundary of ''W''. This embedding exists if <math>\dim\partial W-1=n-1\geq 2(k+1)</math>. Since we are assuming ''n'' is at least 5 this means that ''k'' is either 0 or 1. Finally, by considering the negative of the given Morse function, ''-f'', we can turn the handle decomposition upside down and also remove the ''n''- and (''n''+1)-handles as desired.
 
'''4) Handle Sliding'''
 
Finally, we want to make sure that doing row and column operations on <math>\partial_k</math> corresponds to a geometric operation. Indeed, it isn't hard to show (best done by drawing a picture) that sliding a ''k''-handle <math>h_{\alpha}^k</math> over another ''k''-handle <math>h_{\beta}^k</math> replaces <math>h_{\alpha}^k</math> by <math>h_{\alpha}^k\pm h_{\beta}^k</math> in the basis for <math>C_k</math>.
 
The proof of the theorem now follows: the handle chain complex is exact since <math>H_*(W,M;\mathbb{Z})=0</math>. Thus <math>C_k\cong \mathrm{coker}\,\partial_{k+1}\oplus\mathrm{im}\,\partial_{k+1}</math> since the <math>C_k</math> are free. Then <math>\partial_k</math>, which is an integer matrix, restricts to an invertible morphism which can thus be diagonalized via elementary row operations (handle sliding) and must have only <math>\pm 1</math> on the diagonal because it is invertible. Thus, all handles are paired with a single other cancelling handle yielding a decomposition with no handles.
 
==The ''s''-cobordism theorem ==
If the assumption that ''M'' and ''N'' are simply connected is dropped, ''h''-cobordisms need not be cylinders; the obstruction is exactly the [[Whitehead torsion]] τ (''W'', ''M'') of the inclusion <math>M \hookrightarrow W</math>.
 
Precisely, the '''''s''-cobordism theorem''' (the ''s'' stands for [[simple-homotopy equivalence]]), proved independently by [[Barry Mazur]], [[John Stallings]], and [[Dennis Barden]], states (assumptions as above but where ''M'' and ''N'' need not be simply connected):
: An ''h''-cobordism is a cylinder if and only if [[Whitehead torsion]] τ (''W'', ''M'') vanishes.
The torsion vanishes if and only if the inclusion <math>M \hookrightarrow W</math> is not just a homotopy equivalence, but a [[simple homotopy equivalence]].
 
Note that one need not assume that the other inclusion <math>N \hookrightarrow W</math> is also a simple homotopy equivalence—that follows from the theorem.
 
Categorically, ''h''-cobordisms form a [[groupoid]].
 
Then a finer statement of the ''s''-cobordism theorem is that the isomorphism classes of this groupoid (up to '''Cat'''-isomorphism of ''h''-cobordisms) are [[torsor]]s for the respective<ref>Note that identifying the Whitehead groups of the various manifolds requires that one choose base points <math>m\in M, n\in N</math> and a path in ''W'' connecting them.</ref> [[Whitehead group]]s Wh(π), where <math>\pi \cong \pi_1(M) \cong \pi_1(W) \cong \pi_1(N).</math>
 
==Notes==
<references/>
 
== See also ==
* [[Semi-s-cobordism|Semi-''s''-cobordism]]
 
==References==
* Freedman, Michael H.; Quinn, Frank, ''Topology of 4-manifolds'', Princeton Mathematical Series, vol. 39, Princeton University Press, Princeton, NJ, 1990. viii+259 pp.&nbsp;ISBN 0-691-08577-3. This does the theorem for  topological 4-manifolds.
*[[John Milnor|Milnor, John]], ''Lectures on the h-cobordism theorem'', notes by L. Siebenmann and J. Sondow, [[Princeton University Press]], Princeton, NJ, 1965. v+116 pp. This gives the proof for smooth manifolds.
*Rourke, Colin Patrick; Sanderson, Brian Joseph, ''Introduction to piecewise-linear topology'',  Springer Study Edition, [[Springer-Verlag]], Berlin-New York, 1982.  ISBN 3-540-11102-6. This proves the theorem for PL manifolds.
*S. Smale,   "On the structure of manifolds"  Amer. J. Math., 84  (1962)  pp.&nbsp;387–399
*{{springer|id=H/h046010|title=h-cobordism|first=Yu.B.|last= Rudyak}}
 
{{DEFAULTSORT:H-Cobordism}}
[[Category:Differential topology]]
[[Category:Surgery theory]]

Revision as of 23:11, 23 December 2013

Template:Lowercase

In geometric topology and differential topology, an (n+1)-dimensional cobordism W between n-dimensional manifolds M and N is an h-cobordism (the h stands for homotopy equivalence) if the inclusion maps

MWandNW

are homotopy equivalences.

The h-cobordism theorem gives sufficient conditions for an h-cobordism to be trivial, i.e., to be Cat-isomorphic to the cylinder M × [0, 1]. Here Cat refers to any of the categories of smooth, piecewise linear, or topological manifolds.

The theorem was first proved by Stephen Smale for which he received the Fields Medal and is the fundamental result in the theory of high-dimensional manifolds. For a start, it almost immediately proves the Generalized Poincaré Conjecture.

Background

Before Smale proved this theorem, mathematicians had got stuck trying to understand manifolds of dimension 3 or 4, and assumed that the higher-dimensional cases were even harder. The h-cobordism theorem showed that (simply connected) manifolds of dimension at least 5 are much easier than those of dimension 3 or 4. The proof of the theorem depends on the "Whitney trick" of Hassler Whitney, which geometrically untangles homologically-tangled spheres of complementary dimension in a manifold of dimension >5. An informal reason why manifolds of dimension 3 or 4 are unusually hard is that the trick fails to work in lower dimensions, which have no room for untanglement.

Precise statement of the h-cobordism theorem

Let n be at least 5 and let W be a compact (n+1)-dimensional h-cobordism between M and N in the category Cat=Diff, PL, or Top such that W, M and N are simply connected, then W is Cat-isomorphic to M × [0, 1]. The isomorphism can be chosen to be the identity on M × {0}.

This means that the homotopy equivalence between M, W, and N is homotopic to a Cat-isomorphism.

Low dimensions

For n = 4, the h-cobordism theorem is true topologically (proved by Michael Freedman using a 4-dimensional Whitney trick) but is false PL and smoothly (as shown by Simon Donaldson).

For n = 3, the h-cobordism theorem for smooth manifolds has not been proved and, due to the Poincaré conjecture, is equivalent to the hard open question of whether the 4-sphere has non-standard smooth structures.

For n = 2, the h-cobordism theorem[1] is true – it is equivalent to the Poincaré conjecture, which has been proved by Grigori Perelman.

For n = 1, h-cobordism theorem is vacuously true, since there is no closed simply-connected 1-dimensional manifold.

For n = 0, the h-cobordism theorem is trivially true: the interval is the only connected cobordism between connected 0-manifolds.

A proof sketch

A Morse function f:W[a,b] induces a handle decomposition of W, i.e., if there is a single critical point of index k in f1([c,c]), then the ascending cobordism Wc is obtained from Wc by attaching a k-handle. The goal of the proof is to find a handle decomposition with no handles at all so that integrating the non-zero gradient vector field of f gives the desired diffeomorphism to the trivial cobordism.

This is achieved through a series of techniques.

1) Handle Rearrangement

First, we want to rearrange all handles by order so that lower order handles are attached first. The question is thus when can we slide an i-handle off of a j-handle? This can be done by a radial isotopy so long as the i attaching sphere and the j belt sphere do not intersect. We thus want (i1)+(nj)dimW1=n1 which is equivalent to ij.

We then define the handle chain complex (C*,*) by letting Ck be the free abelian group on the k-handles and defining k:CkCk1 by sending a k-handle hαk to β<hαk|hβk1>hβk1, where <hαk|hβk1> is the intersection number of the k-attaching sphere and the (k-1)-belt sphere.

2) Handle Cancellation

Next, we want to "cancel" handles. The idea is that attaching a k-handle hαk might create a hole that can be filled in by attaching a (k+1)-handle hβk+1. This would imply that k+1hβk+1=±hαk and so the (α,β) entry in the matrix of k+1 would be ±1. However, when is this condition sufficient? That is, when can we geometrically cancel handels if this condition is true? The answer lies in carefully analyzing when the manifold remains simply-connected after removing the attaching and belt spheres in question, and finding an embedded disk using the Whitney trick. This analysis leads to the requirement that n must be at least 5. Moreover, during the proof one requires that the cobordism has no 0-,1-,n-, or (n+1)-handles which is obtained by the next technique.

3) Handle Trading

The idea of handle trading is to create a cancelling pair of (k+1)- and (k+2)-handles so that a given k-handle cancels with the (k+1)-handle leaving behind the (k+2)-handle. To do this, consider the core of the k-handle which is an element in πk(W,M). This group is trivial since W is an h-cobordism. Thus, there is a disk Dk+1 which we can fatten to a cancelling pair as desired, so long as we can embed this disk into the boundary of W. This embedding exists if dimW1=n12(k+1). Since we are assuming n is at least 5 this means that k is either 0 or 1. Finally, by considering the negative of the given Morse function, -f, we can turn the handle decomposition upside down and also remove the n- and (n+1)-handles as desired.

4) Handle Sliding

Finally, we want to make sure that doing row and column operations on k corresponds to a geometric operation. Indeed, it isn't hard to show (best done by drawing a picture) that sliding a k-handle hαk over another k-handle hβk replaces hαk by hαk±hβk in the basis for Ck.

The proof of the theorem now follows: the handle chain complex is exact since H*(W,M;)=0. Thus Ckcokerk+1imk+1 since the Ck are free. Then k, which is an integer matrix, restricts to an invertible morphism which can thus be diagonalized via elementary row operations (handle sliding) and must have only ±1 on the diagonal because it is invertible. Thus, all handles are paired with a single other cancelling handle yielding a decomposition with no handles.

The s-cobordism theorem

If the assumption that M and N are simply connected is dropped, h-cobordisms need not be cylinders; the obstruction is exactly the Whitehead torsion τ (W, M) of the inclusion MW.

Precisely, the s-cobordism theorem (the s stands for simple-homotopy equivalence), proved independently by Barry Mazur, John Stallings, and Dennis Barden, states (assumptions as above but where M and N need not be simply connected):

An h-cobordism is a cylinder if and only if Whitehead torsion τ (W, M) vanishes.

The torsion vanishes if and only if the inclusion MW is not just a homotopy equivalence, but a simple homotopy equivalence.

Note that one need not assume that the other inclusion NW is also a simple homotopy equivalence—that follows from the theorem.

Categorically, h-cobordisms form a groupoid.

Then a finer statement of the s-cobordism theorem is that the isomorphism classes of this groupoid (up to Cat-isomorphism of h-cobordisms) are torsors for the respective[2] Whitehead groups Wh(π), where ππ1(M)π1(W)π1(N).

Notes

  1. In 3 dimensions and below, the categories are the same: Diff = PL = Top.
  2. Note that identifying the Whitehead groups of the various manifolds requires that one choose base points mM,nN and a path in W connecting them.

See also

References

  • Freedman, Michael H.; Quinn, Frank, Topology of 4-manifolds, Princeton Mathematical Series, vol. 39, Princeton University Press, Princeton, NJ, 1990. viii+259 pp. ISBN 0-691-08577-3. This does the theorem for topological 4-manifolds.
  • Milnor, John, Lectures on the h-cobordism theorem, notes by L. Siebenmann and J. Sondow, Princeton University Press, Princeton, NJ, 1965. v+116 pp. This gives the proof for smooth manifolds.
  • Rourke, Colin Patrick; Sanderson, Brian Joseph, Introduction to piecewise-linear topology, Springer Study Edition, Springer-Verlag, Berlin-New York, 1982. ISBN 3-540-11102-6. This proves the theorem for PL manifolds.
  • S. Smale, "On the structure of manifolds" Amer. J. Math., 84 (1962) pp. 387–399
  • Other Sports Official Kull from Drumheller, has hobbies such as telescopes, property developers in singapore and crocheting. Identified some interesting places having spent 4 months at Saloum Delta.

    my web-site http://himerka.com/