|
|
Line 1: |
Line 1: |
| {{pp-protected|expiry=2014-03-01 23:06:54|small=yes}}[[File:Plates tect2 en.svg|thumb|right|350px|The tectonic plates of the lithosphere on Earth]]
| | Unfortunately, whether you place their http://www.manta.com/c/mx43l1f/chiropractor-orlando - [http://www.manta.com/c/mx43l1f/chiropractor-orlando click through the up coming web page] - loved one's life that a burial coffin is a cost effective for you. Pallbearers will be appropriate for orlando chiropractic funerals and had them deleted, but everyone's situation's different. The Eulogy The Bright Light at orlando chiropractic the First Christian Church in Poteau, OK to Ernest & Leona Hicks Powell. I would be insulting, there are host of deep-rooted emotions.<br><br> |
| [[File:Earth-cutaway-schematic-english.svg|thumb|350px|[[Earth]] cutaway from [[Core (geology)|core]] to [[Crust (geology)|crust]], the lithosphere comprising the crust and lithospheric mantle (detail not to scale)]]
| |
| The '''lithosphere''' ({{lang-grc|λίθος}} [''lithos''] for "rocky", and {{lang|grc|σφαῖρα}} [''sphaira''] for "sphere") is the rigid<ref>Skinner, B.J. & Porter, S.C.: ''Physical Geology'', page 17, chapt. ''The Earth: Inside and Out'', 1987, John Wiley & Sons, ISBN 0-471-05668-5</ref> outermost shell of a rocky [[planet]] defined on the basis of the mechanical properties. On [[Earth]], it comprises the [[Crust (geology)|crust]] and the portion of the upper [[Mantle (geology)|mantle]] that behaves elastically on time scales of thousands of years or greater. The outermost shell of a rocky planet defined on the basis of the chemistry and mineralogy is a crust.
| |
|
| |
|
| == Earth's lithosphere ==
| | my web site ... http://www.manta.com/c/mx43l1f/chiropractor-orlando - [http://www.manta.com/c/mx43l1f/chiropractor-orlando click through the up coming web page] - |
| | |
| In the Earth, the lithosphere includes the crust and the uppermost mantle, which constitute the hard and rigid outer layer of the Earth. The lithosphere is underlain by the [[asthenosphere]], the weaker, hotter, and deeper part of the upper mantle. The boundary between the lithosphere and the underlying asthenosphere is defined by a difference in response to stress: the lithosphere remains rigid for very long periods of geologic time in which it deforms elastically and through brittle failure, while the asthenosphere deforms viscously and accommodates strain through plastic deformation. The lithosphere is broken into [[plate tectonics|tectonic plates]]. The uppermost part of the lithosphere that chemically reacts to the [[Earth's atmosphere|atmosphere]], [[hydrosphere]] and [[biosphere]] through the [[Pedogenesis|soil forming process]] is called the [[pedosphere]].
| |
| | |
| The concept of the lithosphere as Earth’s strong outer layer was developed by [[Joseph Barrell]], who wrote a series of papers introducing the concept.<ref>{{cite journal|jstor=30056401|author=Barrell, J|year= 1914 |title=The strength of the Earth's crust|journal= Journal of Geology|volume=22|pages= 289–314|doi=10.1086/622155|issue=4|bibcode = 1914JG.....22..289B }}</ref><ref>{{cite journal|jstor=30067162|author=Barrell, J|year= 1914 |title=The strength of the Earth's crust|journal= Journal of Geology|volume=22|pages=441–468|doi=10.1086/622163|issue=5|bibcode = 1914JG.....22..441B }}</ref><ref>{{cite journal|jstor=30060774|author=Barrell, J|year= 1914 |title=The strength of the Earth's crust|journal= Journal of Geology|volume=22|pages=655–683|doi=10.1086/622181|issue=7|bibcode = 1914JG.....22..655B }}</ref><ref>{{cite journal|jstor=30067883|author=Barrell, J|year= 1914 |title=The strength of the Earth's crust|journal= Journal of Geology|volume=22|pages=537–555|doi=10.1086/622170|issue=6|bibcode = 1914JG.....22..537B }}</ref> The concept was based on the presence of significant gravity anomalies over continental crust, from which he inferred that there must exist a strong upper layer (which he called the lithosphere) above a weaker layer which could flow (which he called the asthenosphere). These ideas were expanded by Harvard geologist [[Reginald Aldworth Daly]] in 1940 with his seminal work "Strength and Structure of the Earth"<ref>Daly, R. (1940) ''Strength and structure of the Earth''. New York: Prentice-Hall.</ref> and have been broadly accepted by geologists and geophysicists. Although these ideas about lithosphere and asthenosphere were developed long before [[plate tectonic theory]] was articulated in the 1960s, the concepts that a strong lithosphere exists and that this rests on a weak asthenosphere are essential to that theory.
| |
| | |
| There are two types of lithosphere:
| |
| * Oceanic lithosphere, which is associated with [[oceanic crust]] and exists in the ocean basins (mean density of about 2.9 grams per cubic centimeter)
| |
| * Continental lithosphere, which is associated with [[continental crust]] (mean density of about 2.7 grams per cubic centimeter)
| |
| | |
| The thickness of the lithosphere is considered to be the depth to the isotherm associated with the transition between brittle and viscous behavior.<ref>{{cite journal|author=Parsons, B. and McKenzie, D. |year=1978|title= Mantle Convection and the thermal structure of the plates|journal= Journal of Geophysical Research|url=http://www.earth.ox.ac.uk/~johne/teaching/pdfs/parsons-mckenzie78.pdf|volume=83|issue=B9|page=4485|bibcode = 1978JGR....83.4485P |doi = 10.1029/JB083iB09p04485 }}</ref> The temperature at which [[olivine]] begins to deform viscously (~1000 °C) is often used to set this isotherm because olivine is generally the weakest mineral in the upper mantle. Oceanic lithosphere is typically about 50–100 km thick (but beneath the [[mid-ocean ridge]]s is no thicker than the crust), while continental lithosphere has a range in thickness from about 40 km to perhaps 200 km; the upper ~30 to ~50 km of typical continental lithosphere is crust. The mantle part of the lithosphere consists largely of [[peridotite]]. The crust is distinguished from the upper mantle by the change in chemical composition that takes place at the [[Moho discontinuity]].
| |
| | |
| === Oceanic lithosphere ===
| |
| | |
| Oceanic lithosphere consists mainly of [[mafic]] crust and [[ultramafic]] mantle (peridotite) and is denser than continental lithosphere, for which the mantle is associated with crust made of [[felsic]] rocks. Oceanic lithosphere thickens as it ages and moves away from the mid-ocean ridge. This thickening occurs by conductive cooling, which converts hot asthenosphere into lithospheric mantle and causes the oceanic lithosphere to become increasingly thick and dense with age. The thickness of the mantle part of the oceanic lithosphere can be approximated as a thermal boundary layer that thickens as the square root of time.
| |
| ::<math> \, h \, \sim \, 2\, \sqrt{ \kappa t } \,</math>
| |
| | |
| Here, <math>h</math> is the thickness of the oceanic mantle lithosphere, <math>\kappa</math> is the thermal diffusivity (approximately 10<sup>−6</sup> m<sup>2</sup>/s) for silicate rocks, and <math>t</math> is the age of the given part of the lithosphere. The age is often equal to L/V, where L is the distance from the spreading centre of [[mid-oceanic ridge]], and V is velocity of the lithopheric plate.
| |
| | |
| Oceanic lithosphere is less dense than asthenosphere for a few tens of millions of years but after this becomes increasingly denser than asthenosphere. This is because the chemically differentiated oceanic crust is lighter than asthenosphere, but [[thermal contraction]] of the mantle lithosphere makes it more dense than the asthenosphere. The gravitational instability of mature oceanic lithosphere has the effect that at [[subduction zone]]s, oceanic lithosphere invariably sinks underneath the overriding lithosphere, which can be oceanic or continental. New oceanic lithosphere is constantly being produced at mid-ocean ridges and is recycled back to the mantle at subduction zones. As a result, oceanic lithosphere is much younger than continental lithosphere: the oldest oceanic lithosphere is about 170 million years old, while parts of the continental lithosphere are billions of years old. The oldest parts of continental lithosphere underlie [[craton]]s, and the mantle lithosphere there is thicker and less dense than typical; the relatively low density of such mantle "roots of cratons" helps to stabilize these regions.<ref>{{cite journal|doi=10.1038/274544a0|title=Composition and development of the continental tectosphere|year=1978|last1=Jordan|first1=Thomas H.|journal=Nature|volume=274|issue=5671|pages=544|bibcode = 1978Natur.274..544J }}</ref><ref name="Doilithos">{{cite journal|doi=10.1016/j.lithos.2009.04.028|title=Ultradeep continental roots and their oceanic remnants: A solution to the geochemical "mantle reservoir" problem?|year=2009|last1=O'Reilly|first1=Suzanne Y.|last2=Zhang|first2=Ming|last3=Griffin|first3=William L.|last4=Begg|first4=Graham|last5=Hronsky|first5=Jon|journal=Lithos|volume=112|pages=1043|bibcode = 2009Litho.112.1043O }}</ref>
| |
| | |
| === Subducted lithosphere ===
| |
| Geophysical studies in the early 21st century posit that large pieces of the lithosphere have been subducted into the mantle as deep as 2900 km to near the core-mantle boundary,<ref>{{cite journal|doi=10.1016/j.epsl.2004.09.015|title=Derivation of Large Igneous Provinces of the past 200 million years from long-term heterogeneities in the deep mantle|year=2004|last1=Burke|first1=Kevin|last2=Torsvik|first2=Trond H.|journal=Earth and Planetary Science Letters|volume=227|issue=3–4|pages=531|bibcode = 2004E&PSL.227..531B }}</ref> while others "float" in the upper mantle,<ref>{{cite journal|doi=10.1016/S0012-821X(04)00070-6|title=4-D evolution of SE Asia's mantle from geological reconstructions and seismic tomography|year=2004|last1=Replumaz|first1=Anne|last2=Kárason|first2=Hrafnkell|last3=Van Der Hilst|first3=Rob D|last4=Besse|first4=Jean|last5=Tapponnier|first5=Paul|journal=Earth and Planetary Science Letters|volume=221|pages=103|bibcode = 2004E&PSL.221..103R }}</ref><ref>{{cite journal|doi=10.1029/2007GC001806|title=A new global model for P wave speed variations in Earth's mantle|year=2008|last1=Li|first1=Chang|last2=Van Der Hilst|first2=Robert D.|last3=Engdahl|first3=E. Robert|last4=Burdick|first4=Scott|journal=Geochemistry Geophysics Geosystems|volume=9|issue=5|bibcode = 2008GGG.....905018L }}</ref> while some stick down into the mantle as far as 400 km but remain "attached" to the continental plate above,<ref name="Doilithos" /> similar to the extent of the "tectosphere" proposed by Jordan in 1988.<ref>{{cite journal|doi=10.1093/petrology/Special_Volume.1.11|title=Structure and formation of the continental tectosphere}}</ref>
| |
| | |
| == Mantle xenoliths ==
| |
| | |
| Geoscientists can directly study the nature of the subcontinental mantle by examining mantle [[xenolith]]s<ref>Nixon, P.H. (1987) ''Mantle xenoliths'' J. Wiley & Sons, 844 p. ISBN 0-471-91209-3</ref> brought up in [[kimberlite]], [[lamproite]], and other volcanic pipes. The histories of these xenoliths have been investigated by many methods, including analyses of abundances of isotopes of [[osmium]] and [[rhenium]]. Such studies have confirmed that mantle lithospheres below some cratons have persisted for periods in excess of 3 billion years, despite the mantle flow that accompanies plate tectonics.<ref>{{cite journal|doi=10.1029/2004RG000156|url=http://earth.usc.edu/downloads/tjordan/copenhagenreadings/c6-carlsonetalrevgeoph2005.pdf|title=Physical, chemical, and chronological characteristics of continental mantle|year=2005|last1=Carlson|first1=Richard W.|journal=Reviews of Geophysics|volume=43|bibcode = 2005RvGeo..43.1001C }}</ref>
| |
| | |
| == See also ==
| |
| *[[Cryosphere]]
| |
| *[[Geosphere]]
| |
| *[[Kola Superdeep Borehole]]
| |
| *[[Plate tectonics]]
| |
| *[[Table of global climate system components]]
| |
| | |
| == References ==
| |
| {{reflist|30em}}
| |
| | |
| == Further reading ==
| |
| *{{cite book |first=Stanley |last=Chernicoff |first2=Donna |last2=Whitney |title=Geology. An Introduction to Physical Geology |edition=4th |publisher=Pearson |year=1990 |location= |isbn=0131751247 }}
| |
| | |
| == External links ==
| |
| {{Commons category}}
| |
| * [http://www.windows.ucar.edu/cgi-bin/tour_def/earth/interior/earths_crust.html Earth's Crust, Lithosphere and Asthenosphere]
| |
| * [http://www.geolsoc.org.uk/template.cfm?name=lithosphere Crust and Lithosphere]
| |
| | |
| {{earthsinterior}}
| |
| | |
| [[Category:Plate tectonics]]
| |
| [[Category:Physical geography]]
| |
| [[Category:Structure of the Earth]]
| |
| [[Category:Systems ecology]]
| |
| | |
| [[hy:Քարոլորտ]]
| |
Unfortunately, whether you place their http://www.manta.com/c/mx43l1f/chiropractor-orlando - click through the up coming web page - loved one's life that a burial coffin is a cost effective for you. Pallbearers will be appropriate for orlando chiropractic funerals and had them deleted, but everyone's situation's different. The Eulogy The Bright Light at orlando chiropractic the First Christian Church in Poteau, OK to Ernest & Leona Hicks Powell. I would be insulting, there are host of deep-rooted emotions.
my web site ... http://www.manta.com/c/mx43l1f/chiropractor-orlando - click through the up coming web page -