Cross-flow filtration: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
en>Peter in s
en>Monkbot
Line 1: Line 1:
In [[mathematics]], the '''Brunn–Minkowski theorem''' (or '''Brunn–Minkowski inequality''') is an inequality relating the volumes (or more generally [[Lebesgue measure]]s) of [[compact space|compact]] [[subset]]s of [[Euclidean space]]. The original version of the Brunn–Minkowski theorem ([[Hermann Brunn]] 1887; [[Hermann Minkowski]] 1896) applied to convex sets; the generalization to compact nonconvex sets stated here is due to [[Lazar Lyusternik|L. A. Lyusternik]] (1935).
Wilber Berryhill is what his spouse loves to call him and he completely enjoys this title. To perform lacross is some thing he would never give up. Invoicing is what I do for  [http://hknews.classicmall.com.hk/groups/some-simple-tips-for-personal-development-progress/ real psychics] a living but I've always wanted my own business. Her family life in Ohio but her husband wants them to move.<br><br>Also visit my web blog :: love [http://test.jeka-nn.ru/node/129 live psychic reading] readings; [http://www.weddingwall.com.au/groups/easy-advice-for-successful-personal-development-today/ mouse click the up coming internet site],
 
==Statement of the theorem==
Let ''n'' ≥ 1 and let ''μ'' denote the [[Lebesgue measure]] on '''R'''<sup>''n''</sup>. Let ''A'' and ''B'' be two nonempty compact subsets of '''R'''<sup>''n''</sup>. Then the following [[inequality (mathematics)|inequality]] holds:
 
:<math>[ \mu (A + B) ]^{1/n} \geq [\mu (A)]^{1/n} + [\mu (B)]^{1/n},</math>
 
where ''A'' + ''B'' denotes the [[Minkowski sum]]:
 
:<math>A + B := \{\, a + b \in \mathbb{R}^{n} \mid a \in A,\ b \in B \,\}.</math>
 
==Remarks==
The proof of the Brunn–Minkowski theorem establishes that the function
 
:<math>A \mapsto [\mu (A)]^{1/n}</math>
 
is [[concave function|concave]] in the sense that, for every pair of nonempty compact subsets ''A'' and ''B'' of '''R'''<sup>''n''</sup> and every 0 ≤ ''t'' ≤ 1,
 
:<math>\left[ \mu (t A + (1 - t) B ) \right]^{1/n} \geq t [ \mu (A) ]^{1/n} + (1 - t) [ \mu (B) ]^{1/n}.</math>
 
For [[convex set|convex]] sets ''A'' and ''B'', the inequality in the theorem is strict
for 0 < ''t'' < 1 unless ''A'' and ''B'' are [[homothetic]], i.e. are equal up to [[translation (geometry)|translation]] and [[Scaling (geometry)|dilation]].
 
==See also==
* [[Isoperimetric inequality]]
* [[Milman's reverse Brunn–Minkowski inequality]]
* [[Minkowski–Steiner formula]]
* [[Prékopa–Leindler inequality]]
* [[Vitale's random Brunn–Minkowski inequality]]
 
==References==
* {{cite journal | author=Brunn, H. | author-link=Hermann Brunn | title=Über Ovale und Eiflächen | year = 1887 | version=Inaugural Dissertation, München}}
*{{cite book
| last=Fenchel
| first=Werner
| author-link = Werner Fenchel
| coauthors=Bonnesen, Tommy
| title=Theorie der konvexen Körper
| series=Ergebnisse der Mathematik und ihrer Grenzgebiete
| volume=3
| publisher=1. Verlag von Julius Springer
| location=Berlin
| year=1934
}}
*{{cite book
| last=Fenchel
| first=Werner
| author-link=Werner Fenchel
| coauthors=Bonnesen, Tommy
| title=Theory of convex bodies
| publisher=L. Boron, C. Christenson and B. Smith. BCS Associates
| location=Moscow, Idaho
| year=1987
}}
* {{cite book | last=Dacorogna | first=Bernard | title=Introduction to the Calculus of Variations | publisher=Imperial College Press | location=London | year=2004 | isbn=1-86094-508-2 | unused_data=|ISBN status=May be invalid – please double check }}
* [[Heinrich Guggenheimer]] (1977) ''Applicable Geometry'', page 146, Krieger, Huntington ISBN 0-88275-368-1 .
* {{cite journal | last=Lyusternik | first=Lazar A. | authorlink=Lazar Lyusternik | title=Die Brunn–Minkowskische Ungleichnung für beliebige messbare Mengen | journal = Comptes Rendus (Doklady) de l'académie des Sciences de l'uRSS (Nouvelle Série) | volume = III | year = 1935 | pages = 55&ndash;58}}
* {{cite book | last=Minkowski | first=Hermann | authorlink=Hermann Minkowski | title = Geometrie der Zahlen | location = Leipzig | publisher = Teubner | year = 1896}}
* {{cite article|last=Ruzsa|first=Imre&nbsp;Z.|authorlink=Imre Z. Ruzsa|title=The Brunn–Minkowski inequality and nonconvex sets|journal=Geometriae Dedicata|volume=67|doi=10.1023/A:1004958110076 |doi=10.1023/A:1004958110076|year=1997|number=3|pages=337–348|mr=1475877}}
* Rolf Schneider, ''Convex bodies: the Brunn–Minkowski theory,'' Cambridge University Press, Cambridge, 1993.
 
{{DEFAULTSORT:Brunn-Minkowski theorem}}
[[Category:Theorems in measure theory]]
[[Category:Theorems in convex geometry]]
[[Category:Calculus of variations]]
[[Category:Geometric inequalities]]
[[Category:Sumsets]]

Revision as of 13:29, 4 February 2014

Wilber Berryhill is what his spouse loves to call him and he completely enjoys this title. To perform lacross is some thing he would never give up. Invoicing is what I do for real psychics a living but I've always wanted my own business. Her family life in Ohio but her husband wants them to move.

Also visit my web blog :: love live psychic reading readings; mouse click the up coming internet site,