Minor major seventh chord: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
en>Hyacinth
m forte_number=4-Z29|
en>BG19bot
m WP:CHECKWIKI error fix for #61. Punctuation goes before References. Do general fixes if a problem exists. - using AWB (10480)
 
Line 1: Line 1:
'''Lozanić's triangle''' (sometimes called '''Losanitsch's triangle''') is a [[triangular array]] of [[binomial coefficient]]s in a manner very similar to that of [[Pascal's triangle]]. It is named after the Serbian chemist [[Sima Lozanić]], who researched it in his investigation into the symmetries exhibited by rows of paraffins (archaic term for [[alkane]]s).
The author is called Irwin. What I adore doing is performing ceramics but I haven't produced a dime with it. Minnesota is exactly where he's been living for many years. Managing people is what I do and the wage has been really fulfilling.<br><br>my blog post [http://www.pornextras.info/blog/187567 home std test]
 
The first few lines of Lozanić's triangle are
 
                                              1
                                          1    1
                                        1    1    1
                                    1    2    2    1
                                  1    2    4    2    1
                              1    3    6    6    3    1
                            1    3    9    10    9    3    1
                        1    4    12    19    19    12    4    1
                      1    4    16    28    38    28    16    4    1
                  1    5    20    44    66    66    44    20    5    1
                1    5    25    60  110  126  110    60    25    5    1
            1    6    30    85  170  236  236  170    85    30    6    1
          1    6    36  110  255  396  472  396  255  110    36    6    1
      1    7    42  146  365  651  868  868  651  365  146    42    7    1
    1    7    49  182  511  1001  1519  1716  1519  1001  511  182    49    7    1
1    8    56  231  693  1512  2520  3235  3235  2520  1512  693  231    56    8    1
listed in {{OEIS|id=A034851}}.
 
Like Pascal's triangle, outer edge diagonals of Lozanić's triangle are all 1s, and most of the enclosed numbers are the sum of the two numbers above. But for numbers at odd positions ''k'' in even-numbered rows ''n'' (starting the numbering for both with 0), after adding the two numbers above, subtract the number at position (''k''&nbsp;&minus;&nbsp;1)/2 in row ''n''/2&nbsp;&minus;&nbsp;1 of Pascal's triangle.
 
The diagonals next to the edge diagonals contain the positive integers in order, but with each integer stated twice {{OEIS2C|id=A004526}}.
 
Moving inwards, the next pair of diagonals contain the "quarter-squares" ({{OEIS2C|id=A002620}}), or the [[square number]]s and [[pronic number]]s interleaved.
 
The next pair of diagonals contain the [[alkane number]]s ''l''(6, ''n'') ({{OEIS2C|id=A005993}}). And the next pair of diagonals contain the alkane numbers ''l''(7, ''n'') ({{OEIS2C|id=A005994}}), while the next pair has the alkane numbers ''l''(8, ''n'') ({{OEIS2C|id=A005995}}), then alkane numbers ''l''(9, ''n'') ({{OEIS2C|id=A018210}}), then ''l''(10, ''n'') ({{OEIS2C|id=A018211}}), ''l''(11, ''n'') ({{OEIS2C|id=A018212}}), ''l''(12, ''n'') ({{OEIS2C|id=A018213}}), etc.
 
The sum of the ''n''th row of Lozanić's triangle is <math>2^{n-2} + 2^{\lfloor n/2 \rfloor - 1}</math> ({{OEIS2C|id=A005418}} lists the first thirty  values or so).
 
The sums of the diagonals of Lozanić's triangle intermix <math>{F_{2n - 1} + F_{n + 1}} \over 2</math> with <math>{F_{2n} + F_n} \over 2</math> (where ''F''<sub>''x''</sub> is the ''x''th [[Fibonacci number]]).
 
As expected, laying Pascal's triangle over Lozanić's triangle and subtracting yields a triangle with the outer diagonals consisting of zeroes ({{OEIS2C|id=A034852}}, or {{OEIS2C|id=A034877}} for a version without the zeroes). This particular difference triangle has applications in the chemical study of catacondensed polygonal systems.
 
==References==
 
* S. M. Losanitsch, Die Isomerie-Arten bei den Homologen der Paraffin-Reihe, ''Chem. Ber''. 30 (1897), 1917 - 1926.
* N. J. A. Sloane, [http://oeis.org/classic.html Classic Sequences]
 
{{DEFAULTSORT:Lozanic's triangle}}
[[Category:Factorial and binomial topics]]
[[Category:Triangles of numbers]]

Latest revision as of 06:34, 11 October 2014

The author is called Irwin. What I adore doing is performing ceramics but I haven't produced a dime with it. Minnesota is exactly where he's been living for many years. Managing people is what I do and the wage has been really fulfilling.

my blog post home std test