Limb darkening: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
en>PAR
Its not from the center of the star to the edge, its from the center of the image to the edge.
en>Tom.Reding
m WP:GenFixes (page/s, endash, &nbsp, unicodify, and/or concising wikilinks, etc.), et al., ed., ref cleanup using AWB
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
{{Unreferenced|date=December 2009}}
Claude is her name and she totally digs that name. I presently reside in Arizona but now I'm contemplating other options. Playing croquet is some thing I will by no means give up. Managing individuals is how I make cash and it's some thing I really appreciate.<br><br>Here is my web-site [http://Amntownhall.com/profile.php?u=GaJeppesen extended auto warranty]
The '''sort-merge join''' (also known as merge-join) is a [[join algorithm]] and is used in the implementation of a [[relational database|relational]] [[database management system]].
 
The basic problem of a join algorithm is to find, for each distinct value of the join attribute, the set of [[tuple]]s in each relation which display that value. The key idea of the Sort-merge algorithm is to first sort the relations by the join attribute, so that interleaved linear scans will encounter these sets at the same time.
 
In practice, the most expensive part of performing a sort-merge join is arranging for both inputs to the algorithm to be presented in sorted order. This can be achieved via an explicit sort operation (often an [[external sort]]), or by taking advantage of a pre-existing ordering in one or both of the join relations. The latter condition can occur because an input to the join might be produced by an index scan of a tree-based index, another merge join, or some other plan operator that happens to produce output sorted on an appropriate key.
 
Let's say that we have two relations <math>R</math> and <math>S</math> and <math>|R|<|S|</math>. <math>R</math> fits in <math>P_{r}</math> pages memory and <math>S</math> fits in <math>P_{s}</math> pages memory. So, in the worst case '''Sort-Merge Join''' will run in <math>O(P_{r}+P_{s})</math> I/Os. In the case that <math>R</math> and <math>S</math> are not ordered the worst case time cost will contain additional terms of sorting time: <math>O(P_{r}+P_{s}+P_{r}\log(P_{r})+ P_{s}\log(P_{s}))</math>, which equals <math>O(P_{r}\log(P_{r})+ P_{s}\log(P_{s}))</math> (as [[linearithmic time|linearithmic]] terms outweigh the linear terms, see [[Big O notation#Orders of common functions|Big O notation – Orders of common functions]]).
 
==Pseudocode==
For simplicity, the algorithm is described in the case of an [[Join_(SQL)#Inner_join|inner join]] of two relations on a single attribute.  Generalization to other join types, more relations and more keys is straightforward.
 
  '''function''' sortMerge('''relation''' left, '''relation''' right, '''attribute''' a)
      '''var relation''' output
      '''var list''' left_sorted := sort(left, a) ''// Relation left sorted on attribute a''
      '''var list''' right_sorted := sort(right, a)
      '''var attribute''' left_key, right_key
      '''var set''' left_subset, right_subset ''// These sets discarded except where join predicate is satisfied''
      advance(left_subset, left_sorted, left_key, a)
      advance(right_subset, right_sorted, right_key, a)
      '''while not''' empty(left_subset) '''and not''' empty(right_subset)
          '''if''' left_key = right_key ''// Join predicate satisfied''
              add cross product of left_subset and right_subset to output
              advance(left_subset, left_sorted, left_key, a)
              advance(right_subset, right_sorted, right_key, a)
          '''else if''' left_key < right_key
            advance(left_subset, left_sorted, left_key, a)
          '''else''' ''// left_key > right_key''
            advance(right_subset, right_sorted, right_key, a)
      '''return''' output
 
  ''// Remove tuples from sorted to subset until the sorted[1].a value changes''
  '''function''' advance(subset '''out''', sorted '''inout''', key '''out''', a '''in''')
      key := sorted[1].a
      subset := '''emptySet'''
      '''while not''' empty(sorted) '''and''' sorted[1].a = key
          insert sorted[1] into subset
          remove sorted[1]
 
==Simple C# Implementation==
Note that this implementation assumes the join attributes are unique, i.e., there is no need to output multiple tuples for a given value of the key.
<source lang="csharp">
public class MergeJoin
{
    // Assume that left and right are already sorted
    public static Relation Sort(Relation left, Relation right)
    {
        Relation output = new Relation();
        while (!left.IsPastEnd() && !right.IsPastEnd())
        {
            if (left.Key == right.Key)
            {
                output.Add(left.Key);
                left.Advance();
                right.Advance();
            }
            else if (left.Key < right.Key)
                left.Advance();
            else //(left.Key > right.Key)
                right.Advance();
        }
        return output;
    }
}
public class Relation
{
    private List<int> list;
    public const int ENDPOS = -1;
 
    public int position = 0;
    public int Position
    {
        get { return position; }
    }
 
    public int Key
    {
        get { return list[position]; }
    }
 
    public bool Advance()
    {
        if (position == list.Count - 1 || position == ENDPOS)
        {
            position = ENDPOS;
            return false;
        }
        position++;
        return true;
    }
 
    public void Add(int key)
    {
        list.Add(key);
    }
 
    public bool IsPastEnd()
    {
        return position == ENDPOS;
    }
 
    public void Print()
    {
        foreach (int key in list)
            Console.WriteLine(key);
    }
 
    public Relation(List<int> list)
    {
        this.list = list;
    }
 
    public Relation()
    {
        this.list = new List<int>();
    }
}
</source>
 
==External links==
C# Implementations of Various Join Algorithms (dead link) [http://www.necessaryandsufficient.net/2010/02/join-algorithms-illustrated/]
 
{{DEFAULTSORT:Sort-Merge Join}}
[[Category:Join algorithms]]

Latest revision as of 23:31, 7 January 2015

Claude is her name and she totally digs that name. I presently reside in Arizona but now I'm contemplating other options. Playing croquet is some thing I will by no means give up. Managing individuals is how I make cash and it's some thing I really appreciate.

Here is my web-site extended auto warranty