|
|
(One intermediate revision by one other user not shown) |
Line 1: |
Line 1: |
| {{Portal|Logic}}
| | I woke up yesterday and realized - Now I have been single for a while and after much bullying from friends I now locate myself signed-up for on line dating. They assured me that there are lots of sweet, [http://search.Un.org/search?ie=utf8&site=un_org&output=xml_no_dtd&client=UN_Website_en&num=10&lr=lang_en&proxystylesheet=UN_Website_en&oe=utf8&q=ordinary&Submit=Go ordinary] and interesting people to meet, therefore here goes the pitch!<br>I make an effort to stay as physically healthy as potential coming to the gymnasium several-times per week. I appreciate my sports and make an effort to play or view as numerous a potential. Being winter I am going to frequently at Hawthorn matches. Note: I have seen the carnage of fumbling suits at stocktake revenue, In case that you really contemplated purchasing a sport I do not brain.<br>My friends and household are amazing and spending some time [http://lukebryantickets.neodga.com luke bryan tickets indianapolis] with them at bar gigabytes or meals is constantly vital. As I discover that you can do not get a decent dialogue [http://www.banburycrossonline.com luke bryan tickets houston] together with the noise I haven't ever been in to night clubs. I likewise got two unquestionably cheeky and very cute dogs who are always excited to meet new folks.<br><br><br><br>Here is my weblog :: [http://www.museodecarruajes.org luke bryan tour with] |
| This is a list of [[Rule of inference|rules of inference]], logical laws that relate to mathematical formulae.
| |
| | |
| ==Introduction==
| |
| | |
| '''Rules of inference''' are syntactical '''transform''' rules which one can use to infer a conclusion from a premise to create an argument. A set of rules can be used to infer any valid conclusion if it is complete, while never inferring an invalid conclusion, if it is sound. A sound and complete set of rules need not include every rule in the following list, as many of the rules are redundant, and can be proven with the other rules.
| |
| | |
| ''Discharge rules'' permit inference from a subderivation based on a temporary assumption. Below, the notation
| |
| | |
| : <math>\varphi \vdash \psi\,\!</math> | |
| | |
| indicates such a subderivation from the temporary assumption <math>\varphi\,\!</math> to <math>\psi\,\!</math>.
| |
| | |
| ==Rules for classical sentential calculus==
| |
| Sentential calculus is also known as [[propositional calculus]].
| |
| | |
| ===Rules for negations===
| |
| ;[[Reductio ad absurdum]] (or ''Negation Introduction''):
| |
| : <math>\varphi \vdash \psi\,\!</math>
| |
| : <math>\underline{\varphi \vdash \lnot \psi}\,\!</math>
| |
| : <math>\lnot \varphi\,\!</math>
| |
| | |
| ;Reductio ad absurdum (related to the law of [[excluded middle]]):
| |
| : <math>\lnot \varphi \vdash \psi\,\!</math>
| |
| : <math>\underline{\lnot \varphi \vdash \lnot \psi}\,\!</math>
| |
| : <math>\varphi\,\!</math>
| |
| | |
| ;[[Noncontradiction]] (or ''Negation Elimination''):
| |
| : <math>\varphi\,\!</math>
| |
| : <math>\underline{\lnot \varphi}\,\!</math>
| |
| : <math>\psi\,\!</math>
| |
| | |
| ;[[Double negative elimination|Double negation elimination]]:
| |
| : <math>\underline{\lnot \lnot \varphi}\,\!</math>
| |
| : <math> \varphi\,\!</math>
| |
| | |
| ;[[Double negative introduction|Double negation introduction]]:
| |
| : <math>\underline{\varphi \quad \quad}\,\!</math>
| |
| : <math> \lnot \lnot \varphi\,\!</math>
| |
| | |
| ===Rules for conditionals=== | |
| ;[[Deduction theorem]] (or ''[[Conditional proof|Conditional Introduction]]''):
| |
| : <math>\underline{\varphi \vdash \psi}\,\!</math>
| |
| : <math>\varphi \rightarrow \psi\,\!</math>
| |
| | |
| ;[[Modus ponens]] (or ''Conditional Elimination''):
| |
| : <math>\varphi \rightarrow \psi\,\!</math>
| |
| : <math>\underline{\varphi \quad \quad \quad}\,\!</math>
| |
| : <math>\psi\,\!</math>
| |
| | |
| ;[[Modus tollens]]:
| |
| : <math>\varphi \rightarrow \psi\,\!</math>
| |
| : <math>\underline{\lnot \psi \quad \quad \quad}\,\!</math>
| |
| : <math>\lnot \varphi\,\!</math>
| |
| | |
| ===Rules for conjunctions=== | |
| ;[[Conjunction introduction|Adjunction]] (or ''Conjunction Introduction''):
| |
| | |
| : <math>\varphi\,\!</math>
| |
| : <math>\underline{\psi \quad \quad \ \ }\,\!</math>
| |
| : <math>\varphi \land \psi\,\!</math>
| |
| | |
| ;[[Simplification (logic)|Simplification]] (or ''Conjunction Elimination''):
| |
| | |
| : <math>\underline{\varphi \land \psi}\,\!</math>
| |
| : <math>\varphi\,\!</math>
| |
| | |
| : <math>\underline{\varphi \land \psi}\,\!</math>
| |
| : <math>\psi\,\!</math>
| |
| | |
| ===Rules for disjunctions===
| |
| ;[[Addition (logic)|Addition]] (or ''Disjunction Introduction''):
| |
| : <math>\underline{\varphi \quad \quad \ \ }\,\!</math>
| |
| : <math>\varphi \lor \psi\,\!</math>
| |
| | |
| : <math>\underline{\psi \quad \quad \ \ }\,\!</math>
| |
| : <math>\varphi \lor \psi\,\!</math>
| |
| | |
| ;[[Case analysis]]
| |
| : <math>\varphi \lor \psi\,\!</math>
| |
| : <math>\varphi \rightarrow \chi\,\!</math>
| |
| : <math>\underline{\psi \rightarrow \chi}\,\!</math>
| |
| : <math>\chi\,\!</math>
| |
| | |
| ;[[Disjunctive syllogism]]:
| |
| : <math>\varphi \lor \psi\,\!</math>
| |
| : <math>\underline{\lnot \varphi \quad \quad}\,\!</math>
| |
| : <math>\psi\,\!</math>
| |
| | |
| : <math>\varphi \lor \psi\,\!</math>
| |
| : <math>\underline{\lnot \psi \quad \quad}\,\!</math>
| |
| : <math>\varphi\,\!</math>
| |
| | |
| ===Rules for biconditionals===
| |
| | |
| ;[[Biconditional introduction]]:
| |
| : <math>\varphi \rightarrow \psi\,\!</math>
| |
| : <math>\underline{\psi \rightarrow \varphi}\,\!</math>
| |
| : <math>\varphi \leftrightarrow \psi\,\!</math>
| |
| | |
| ;Biconditional Elimination:
| |
| : <math>\varphi \leftrightarrow \psi\,\!</math>
| |
| : <math>\underline{\varphi \quad \quad}\,\!</math>
| |
| : <math>\psi\,\!</math>
| |
| | |
| : <math>\varphi \leftrightarrow \psi\,\!</math>
| |
| : <math>\underline{\psi \quad \quad}\,\!</math>
| |
| : <math>\varphi\,\!</math>
| |
| | |
| : <math>\varphi \leftrightarrow \psi\,\!</math>
| |
| : <math>\underline{\lnot \varphi \quad \quad}\,\!</math>
| |
| : <math>\lnot \psi\,\!</math>
| |
| | |
| : <math>\varphi \leftrightarrow \psi\,\!</math>
| |
| : <math>\underline{\lnot \psi \quad \quad}\,\!</math>
| |
| : <math>\lnot \varphi\,\!</math>
| |
| | |
| : <math>\varphi \leftrightarrow \psi\,\!</math>
| |
| : <math>\underline{\psi \lor \varphi}\,\!</math>
| |
| : <math>\psi \land \varphi \,\!</math>
| |
| | |
| : <math>\varphi \leftrightarrow \psi\,\!</math>
| |
| : <math>\underline{\lnot \psi \lor \lnot \varphi}\,\!</math>
| |
| : <math>\lnot \psi \land \lnot \varphi \,\!</math>
| |
| | |
| ==Rules of classical [[First-order logic|predicate calculus]]==
| |
| | |
| In the following rules, <math>\varphi(\beta / \alpha)\,\!</math> is exactly like <math>\varphi\,\!</math> except for having the term <math>\beta\,\!</math> everywhere <math>\varphi\,\!</math> has the free variable <math>\alpha\,\!</math>.
| |
| | |
| ;[[Universal generalization|Universal Introduction]] (or ''Universal Generalization''):
| |
| : <math>\underline{\varphi{(\beta / \alpha)}}\,\!</math>
| |
| : <math>\forall \alpha\, \varphi\,\!</math>
| |
| | |
| Restriction 1: <math>\beta</math> does not occur in <math>\varphi</math>.
| |
| <br/>
| |
| Restriction 2: <math>\beta</math> is not mentioned in any hypothesis or undischarged assumptions.
| |
| | |
| ;[[Universal instantiation|Universal Elimination]] (or ''Universal Instantiation''):
| |
| : <math> \forall \alpha\, \varphi\!</math>
| |
| : <math>\overline{\varphi{(\beta / \alpha)}}\!</math>
| |
| | |
| Restriction: No free occurrence of <math>\alpha\,\!</math> in <math>\varphi\,\!</math> falls within the scope of a quantifier quantifying a variable occurring in <math>\beta\,\!</math>.
| |
| | |
| ;Existential Introduction (or ''Existential Generalization''):
| |
| : <math>\underline{\varphi(\beta / \alpha)}\,\!</math>
| |
| : <math>\exists \alpha\, \varphi\,\!</math>
| |
| | |
| Restriction: No free occurrence of <math>\alpha\,\!</math> in <math>\varphi\,\!</math> falls within the scope of a quantifier quantifying a variable occurring in <math>\beta\,\!</math>.
| |
|
| |
| ;Existential Elimination (or ''Existential Instantiation''):
| |
| : <math>\exists \alpha\, \varphi\,\!</math>
| |
| : <math>\underline{\varphi(\beta / \alpha) \vdash \psi}\,\!</math>
| |
| : <math>\psi\,\!</math>
| |
| | |
| Restriction 1: No free occurrence of <math>\alpha\,\!</math> in <math>\varphi\,\!</math> falls within the scope of a quantifier quantifying a variable occurring in <math>\beta\,\!</math>.
| |
| <br/> | |
| Restriction 2: There is no occurrence, free or bound, of <math>\beta\,\!</math> in <math>\psi\,\!</math>.
| |
| | |
| ==Table: Rules of Inference - a short summary==
| |
| The rules above can be summed up in the following table.<ref>Kenneth H. Rosen: ''Discrete Mathematics and its Applications'',Fifth Edition, p. 58.</ref> The "[[Tautology (logic)|Tautology]]" column shows how to interpret the notation of a given rule.
| |
| | |
| {| class="wikitable"
| |
| |-
| |
| ! Rule of inference
| |
| ! Tautology
| |
| ! Name
| |
| |-
| |
| |<math>\begin{align}
| |
| p \\
| |
| \therefore \overline{p \vee q} \\
| |
| \end{align}</math>
| |
| | <math>p \rightarrow (p \vee q)</math>
| |
| | Addition
| |
| |-
| |
| |<math>\begin{align}
| |
| p \wedge q \\
| |
| \therefore \overline{p \quad \quad \quad} \\
| |
| \end{align}</math>
| |
| | <math>(p \wedge q) \rightarrow p</math>
| |
| | Simplification
| |
| |-
| |
| |<math>\begin{align}
| |
| p\\
| |
| q\\
| |
| \therefore \overline{p \wedge q} \\
| |
| \end{align}</math>
| |
| | <math>((p) \wedge (q)) \rightarrow (p \wedge q)</math>
| |
| | Conjunction
| |
| |-
| |
| |<math>\begin{align}
| |
| p\\
| |
| p \rightarrow q\\
| |
| \therefore \overline{q \quad \quad \quad} \\
| |
| \end{align}</math>
| |
| | <math>((p \wedge (p \rightarrow q)) \rightarrow q</math>
| |
| | [[Modus ponens]]
| |
| |-
| |
| |<math>\begin{align}
| |
| \neg q\\
| |
| p \rightarrow q\\
| |
| \therefore \overline{\neg p \quad \quad \quad} \\
| |
| \end{align}</math>
| |
| | <math>((\neg q \wedge (p \rightarrow q)) \rightarrow \neg p</math>
| |
| | [[Modus tollens]]
| |
| |-
| |
| |<math>\begin{align}
| |
| p \rightarrow q\\
| |
| q \rightarrow r\\
| |
| \therefore \overline{p \rightarrow r} \\
| |
| \end{align}</math>
| |
| | <math>((p \rightarrow q) \wedge (q \rightarrow r)) \rightarrow (p \rightarrow r)</math>
| |
| | Hypothetical syllogism
| |
| |-
| |
| |<math>\begin{align}
| |
| p \vee q \\
| |
| \neg p \\
| |
| \therefore \overline{q \quad \quad \quad} \\
| |
| \end{align}</math>
| |
| | <math>((p \vee q) \wedge \neg p) \rightarrow q</math>
| |
| | Disjunctive syllogism
| |
| |-
| |
| |<math>\begin{align}
| |
| p \vee q \\
| |
| \neg p \vee r \\
| |
| \therefore \overline{q \vee r} \\
| |
| \end{align}</math>
| |
| | <math>((p \vee q) \wedge (\neg p \vee r)) \rightarrow (q \vee r)</math>
| |
| | Resolution
| |
| |}
| |
| | |
| All rules use the basic logic operators. A complete table of "logic operators" is shown by a [[truth table]], giving definitions of all the possible (16) truth functions of 2 [[Boolean algebra (logic)|boolean variables]] (''p'', ''q''):
| |
| | |
| {| class="wikitable" style="margin:1em auto 1em auto; text-align:center;"
| |
| |-
| |
| ! ''p'' || ''q''
| |
| |
| |
| ! 0 || 1 || 2 || 3 || 4 || 5 || 6 || 7
| |
| |
| |
| !| 8 || 9 || 10 || 11 || 12 || 13 || 14 || 15
| |
| |-
| |
| ! T || T
| |
| | || F || F || F || F || F || F || F || F || || T || T || T || T || T || T || T || T
| |
| |-
| |
| ! T || F
| |
| | || F || F || F || F || T || T || T || T || || F || F || F || F || T || T || T || T
| |
| |-
| |
| ! F || T
| |
| | || F || F || T || T || F || F || T || T || || F || F || T || T || F || F || T || T
| |
| |-
| |
| ! F || F
| |
| | || F || T || F || T || F || T || F || T || || F || T || F || T || F || T || F || T
| |
| |}
| |
| | |
| where T = true and F = false, and, the columns are the logical operators: '''0''', false, [[Contradiction]]; '''1''', NOR, [[Logical NOR]]; '''2''', [[Converse nonimplication]]; '''3''', '''¬p''', [[Negation]]; '''4''', [[Material nonimplication]]; '''5''', '''¬q''', Negation; '''6''', XOR, [[Exclusive disjunction]]; '''7''', NAND, [[Logical NAND]]; '''8''', AND, [[Logical conjunction]]; '''9''', XNOR, [[If and only if]], [[Logical biconditional]]; '''10''', '''q''', [[Projection function]]; '''11''', if/then, [[Logical implication]]; '''12''', '''p''', Projection function; '''13''', then/if, [[Converse implication]]; '''14''', OR, [[Logical disjunction]]; '''15''', true, [[Tautology (logic)|Tautology]].
| |
| | |
| Each logic operator can be used in an assertion about variables and operations, showing a basic rule of inference. Examples:
| |
| * The column-14 operator (OR), shows ''Addition rule'': when ''p''=T (the hypothesis selects the first two lines of the table), we see (at column-14) that ''p''∨''q''=T.
| |
| *: We can see also that, with the same premise, another conclusions are valid: columns 12, 14 and 15 are T.
| |
| * The column-8 operator (AND), shows ''Simplification rule'': when ''p''∧''q''=T (first line of the table), we see that ''p''=T.
| |
| *: With this premise, we also conclude that ''q''=T, ''p''∨''q''=T, etc. as showed by columns 9-15.
| |
| * The column-11 operator (IF/THEN), shows ''Modus ponens rule'': when ''p''→''q''=T and ''p''=T only one line of the truth table (the first) satisfies these two conditions. On this line, ''q'' is also true. Therefore, whenever p → q is true and p is true, q must also be true.
| |
| Machines and well-trained people use this [[Lookup table|look at table approach]] to do basic inferences, and to check if other inferences (for the same premises) can be obtained.
| |
| | |
| ===Example 1===
| |
| Let us consider the following assumptions: "If it rains today, then we will not go on a canoe today. If we do not go on a canoe trip today, then we will go on a canoe trip tomorrow. Therefore (Mathematical symbol for "therefore" is <math>\therefore</math>), if it rains today, we will go on a canoe trip tomorrow.
| |
| To make use of the rules of inference in the above table we let <math>p</math> be the proposition "If it rains today", <math>q</math> be " We will not go on a canoe today" and let <math>r</math> be "We will go on a canoe trip tomorrow". Then this argument is of the form:
| |
| | |
| <math>\begin{align}
| |
| p \rightarrow q\\
| |
| q \rightarrow r\\
| |
| \therefore \overline{p \rightarrow r} \\
| |
| \end{align}</math>
| |
| | |
| ===Example 2===
| |
| Let us consider a more complex set of assumptions: "It is not sunny today and it is colder than yesterday". "We will go swimming only if it is sunny", "If we do not go swimming, then we will have a barbecue", and "If we will have a barbecue, then we will be home by sunset" lead to the conclusion "We will be home before sunset."
| |
| Proof by rules of inference: Let <math>p</math> be the proposition "It is sunny this today", <math>q</math> the proposition "It is colder than yesterday", <math>r</math> the proposition "We will go swimming", <math>s</math> the proposition "We will have a barbecue", and <math>t</math> the proposition "We will be home by sunset". Then the hypotheses become <math>\neg p \wedge q, r \rightarrow p, \neg r \rightarrow s</math> and <math>s \rightarrow t</math>. Using our intuition we conjecture that the conclusion might be <math>t</math>. Using the Rules of Inference table we can proof the conjecture easily:
| |
| {| class="wikitable"
| |
| |-
| |
| ! Step
| |
| ! Reason
| |
| |-
| |
| | 1.<math>\neg p \wedge q</math>
| |
| | Hypothesis
| |
| |-
| |
| | 2. <math>\neg p</math>
| |
| | Simplification using Step 1
| |
| |-
| |
| | 3. <math>r \rightarrow p</math>
| |
| | Hypothesis
| |
| |-
| |
| | 4. <math>\neg r</math>
| |
| | Modus tollens using Step 2 and 3
| |
| |-
| |
| | 5. <math>\neg r \rightarrow s</math>
| |
| | Hypothesis
| |
| |-
| |
| | 6. <math>s</math>
| |
| | Modus ponens using Step 4 and 5
| |
| |-
| |
| | 7. <math>s \rightarrow t</math>
| |
| | Hypothesis
| |
| |-
| |
| | 8. <math>t</math>
| |
| | Modus ponens using Step 6 and 7
| |
| |}
| |
| | |
| ==References==
| |
| <references/>
| |
| | |
| {{Logic}}
| |
| | |
| {{DEFAULTSORT:List Of Rules Of Inference}}
| |
| [[Category:Rules of inference|*]]
| |
| [[Category:Mathematics-related lists|Rules of inference]]
| |
| [[Category:Philosophy-related lists|Rules of inference]]
| |
| | |
| [[de:Schlussregel]]
| |
| [[it:Elenco di regole di inferenza]]
| |
| [[he:חוקי היקש]]
| |