Aggregate demand: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
No edit summary
en>Oiyarbepsy
Reverted good faith edits by Greek Fellows (talk): You edit introduce a bunch of parsing errors. (TW)
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
{{Portal|Logic}}
I woke up yesterday  and realized - Now I have been single for a while and after much bullying from friends I now locate myself signed-up for on line dating. They assured me that there are lots of sweet, [http://search.Un.org/search?ie=utf8&site=un_org&output=xml_no_dtd&client=UN_Website_en&num=10&lr=lang_en&proxystylesheet=UN_Website_en&oe=utf8&q=ordinary&Submit=Go ordinary] and interesting people to meet, therefore here goes the pitch!<br>I make an effort to stay as physically healthy as potential coming to the gymnasium several-times per week. I appreciate my sports and make an effort to play or view as numerous a potential. Being winter I am going to frequently at Hawthorn matches. Note: I have seen the carnage of fumbling suits at stocktake revenue, In case that you really contemplated purchasing a sport I do not brain.<br>My friends and household are amazing and spending some time  [http://lukebryantickets.neodga.com luke bryan tickets indianapolis] with them at bar gigabytes or meals is constantly vital. As I discover that you can do not get a decent dialogue  [http://www.banburycrossonline.com luke bryan tickets houston] together with the noise I haven't ever been in to night clubs. I likewise got two unquestionably cheeky and very cute dogs who are always excited to meet new folks.<br><br><br><br>Here is my weblog :: [http://www.museodecarruajes.org luke bryan tour with]
This is a list of [[Rule of inference|rules of inference]], logical laws that relate to mathematical formulae.
 
==Introduction==
 
'''Rules of inference''' are syntactical '''transform''' rules which one can use to infer a conclusion from a premise to create an argument.  A set of rules can be used to infer any valid conclusion if it is complete, while never inferring an invalid conclusion, if it is sound. A sound and complete set of rules need not include every rule in the following list, as many of the rules are redundant, and can be proven with the other rules.
 
''Discharge rules'' permit inference from a subderivation based on a temporary assumption. Below, the notation
 
: <math>\varphi \vdash \psi\,\!</math>
 
indicates such a subderivation from the temporary assumption <math>\varphi\,\!</math> to <math>\psi\,\!</math>.
 
==Rules for classical sentential calculus==
Sentential calculus is also known as [[propositional calculus]].
 
===Rules for negations===
;[[Reductio ad absurdum]] (or ''Negation Introduction''):
: <math>\varphi \vdash \psi\,\!</math>
: <math>\underline{\varphi \vdash \lnot \psi}\,\!</math>
: <math>\lnot \varphi\,\!</math>
 
;Reductio ad absurdum (related to the law of [[excluded middle]]):
: <math>\lnot \varphi \vdash \psi\,\!</math>
: <math>\underline{\lnot \varphi \vdash \lnot \psi}\,\!</math>
: <math>\varphi\,\!</math>
 
;[[Noncontradiction]] (or ''Negation Elimination''):
: <math>\varphi\,\!</math>
: <math>\underline{\lnot \varphi}\,\!</math>
: <math>\psi\,\!</math>
 
;[[Double negative elimination|Double negation elimination]]:
: <math>\underline{\lnot \lnot \varphi}\,\!</math>
: <math> \varphi\,\!</math>
 
;[[Double negative introduction|Double negation introduction]]:
: <math>\underline{\varphi \quad \quad}\,\!</math>
: <math> \lnot \lnot \varphi\,\!</math>
 
===Rules for conditionals===
;[[Deduction theorem]] (or ''[[Conditional proof|Conditional Introduction]]''):
: <math>\underline{\varphi \vdash \psi}\,\!</math>
: <math>\varphi \rightarrow \psi\,\!</math>
 
;[[Modus ponens]] (or ''Conditional Elimination''):
: <math>\varphi \rightarrow \psi\,\!</math>
: <math>\underline{\varphi \quad \quad \quad}\,\!</math>
: <math>\psi\,\!</math>
 
;[[Modus tollens]]:
: <math>\varphi \rightarrow \psi\,\!</math>
: <math>\underline{\lnot \psi \quad \quad \quad}\,\!</math>
: <math>\lnot \varphi\,\!</math>
 
===Rules for conjunctions===
;[[Conjunction introduction|Adjunction]] (or ''Conjunction Introduction''):
 
: <math>\varphi\,\!</math>
: <math>\underline{\psi \quad \quad \ \ }\,\!</math>
: <math>\varphi \land \psi\,\!</math>
 
;[[Simplification (logic)|Simplification]] (or ''Conjunction Elimination''):
 
: <math>\underline{\varphi \land \psi}\,\!</math>
: <math>\varphi\,\!</math>
 
: <math>\underline{\varphi \land \psi}\,\!</math>
: <math>\psi\,\!</math>
 
===Rules for disjunctions===
;[[Addition (logic)|Addition]] (or ''Disjunction Introduction''):
: <math>\underline{\varphi \quad \quad \ \ }\,\!</math>
: <math>\varphi \lor \psi\,\!</math>
 
: <math>\underline{\psi \quad \quad \ \ }\,\!</math>
: <math>\varphi \lor \psi\,\!</math>
 
;[[Case analysis]]
: <math>\varphi \lor \psi\,\!</math>
: <math>\varphi \rightarrow \chi\,\!</math>
: <math>\underline{\psi \rightarrow \chi}\,\!</math>
: <math>\chi\,\!</math>
 
;[[Disjunctive syllogism]]:
: <math>\varphi \lor \psi\,\!</math>
: <math>\underline{\lnot \varphi \quad \quad}\,\!</math>
: <math>\psi\,\!</math>
 
: <math>\varphi \lor \psi\,\!</math>
: <math>\underline{\lnot \psi \quad \quad}\,\!</math>
: <math>\varphi\,\!</math>
 
===Rules for biconditionals===
 
;[[Biconditional introduction]]:
: <math>\varphi \rightarrow \psi\,\!</math>
: <math>\underline{\psi \rightarrow \varphi}\,\!</math>
: <math>\varphi \leftrightarrow \psi\,\!</math>
 
;Biconditional Elimination:
: <math>\varphi \leftrightarrow \psi\,\!</math>
: <math>\underline{\varphi \quad \quad}\,\!</math>
: <math>\psi\,\!</math>
 
: <math>\varphi \leftrightarrow \psi\,\!</math>
: <math>\underline{\psi \quad \quad}\,\!</math>
: <math>\varphi\,\!</math>
 
: <math>\varphi \leftrightarrow \psi\,\!</math>
: <math>\underline{\lnot \varphi \quad \quad}\,\!</math>
: <math>\lnot \psi\,\!</math>
 
: <math>\varphi \leftrightarrow \psi\,\!</math>
: <math>\underline{\lnot \psi \quad \quad}\,\!</math>
: <math>\lnot \varphi\,\!</math>
 
: <math>\varphi \leftrightarrow \psi\,\!</math>
: <math>\underline{\psi \lor \varphi}\,\!</math>
: <math>\psi \land \varphi \,\!</math>
 
: <math>\varphi \leftrightarrow \psi\,\!</math>
: <math>\underline{\lnot \psi \lor \lnot \varphi}\,\!</math>
: <math>\lnot \psi \land \lnot \varphi \,\!</math>
 
==Rules of classical [[First-order logic|predicate calculus]]==
 
In the following rules, <math>\varphi(\beta / \alpha)\,\!</math> is exactly like <math>\varphi\,\!</math> except for having the term <math>\beta\,\!</math> everywhere <math>\varphi\,\!</math> has the free variable <math>\alpha\,\!</math>.
 
;[[Universal generalization|Universal Introduction]] (or ''Universal Generalization''):
: <math>\underline{\varphi{(\beta / \alpha)}}\,\!</math>
: <math>\forall \alpha\, \varphi\,\!</math>
 
Restriction 1:  <math>\beta</math> does not occur in <math>\varphi</math>.
<br/>
Restriction 2:  <math>\beta</math> is not mentioned in any hypothesis or undischarged assumptions.
 
;[[Universal instantiation|Universal Elimination]] (or ''Universal Instantiation''):
: <math> \forall \alpha\, \varphi\!</math>
: <math>\overline{\varphi{(\beta / \alpha)}}\!</math>
 
Restriction:  No free occurrence of <math>\alpha\,\!</math> in <math>\varphi\,\!</math> falls within the scope of a quantifier quantifying a variable occurring in <math>\beta\,\!</math>.
 
;Existential Introduction (or ''Existential Generalization''):
: <math>\underline{\varphi(\beta / \alpha)}\,\!</math>
: <math>\exists \alpha\, \varphi\,\!</math>
 
Restriction:  No free occurrence of <math>\alpha\,\!</math> in <math>\varphi\,\!</math> falls within the scope of a quantifier quantifying a variable occurring in <math>\beta\,\!</math>.
;Existential Elimination (or ''Existential Instantiation''):
: <math>\exists \alpha\, \varphi\,\!</math>
: <math>\underline{\varphi(\beta / \alpha) \vdash \psi}\,\!</math>
: <math>\psi\,\!</math>
 
Restriction 1:  No free occurrence of <math>\alpha\,\!</math> in <math>\varphi\,\!</math> falls within the scope of a quantifier quantifying a variable occurring in <math>\beta\,\!</math>.
<br/>
Restriction 2: There is no occurrence, free or bound, of <math>\beta\,\!</math> in <math>\psi\,\!</math>.
 
==Table: Rules of Inference -  a short summary==
The rules above can be summed up in the following table.<ref>Kenneth H. Rosen: ''Discrete Mathematics and its Applications'',Fifth Edition, p. 58.</ref> The "[[Tautology (logic)|Tautology]]" column shows how to interpret the notation of a given rule.  
 
{| class="wikitable"
|-
! Rule of inference
! Tautology
! Name
|-
|<math>\begin{align}
p \\
\therefore \overline{p \vee q} \\
\end{align}</math>
| <math>p \rightarrow (p \vee q)</math>
| Addition
|-
|<math>\begin{align}
p \wedge q \\
\therefore \overline{p \quad \quad \quad} \\
\end{align}</math>
| <math>(p \wedge q)  \rightarrow p</math>
| Simplification
|-
|<math>\begin{align}
p\\
q\\
\therefore \overline{p \wedge q} \\
\end{align}</math>
| <math>((p) \wedge (q))  \rightarrow (p \wedge q)</math>
| Conjunction
|-
|<math>\begin{align}
p\\
p \rightarrow q\\
\therefore \overline{q \quad \quad \quad} \\
\end{align}</math>
| <math>((p \wedge (p \rightarrow q))  \rightarrow q</math>
| [[Modus ponens]]
|-
|<math>\begin{align}
\neg q\\
p \rightarrow q\\
\therefore \overline{\neg p \quad \quad \quad} \\
\end{align}</math>
| <math>((\neg q \wedge (p \rightarrow q))  \rightarrow \neg p</math>
| [[Modus tollens]]
|-
|<math>\begin{align}
p \rightarrow q\\
q \rightarrow r\\
\therefore \overline{p \rightarrow r} \\
\end{align}</math>
| <math>((p \rightarrow q) \wedge (q \rightarrow r)) \rightarrow (p \rightarrow r)</math>
| Hypothetical syllogism
|-
|<math>\begin{align}
p \vee q \\
\neg p \\
\therefore \overline{q \quad \quad \quad} \\
\end{align}</math>
| <math>((p \vee q) \wedge \neg p) \rightarrow q</math>
| Disjunctive syllogism
|-
|<math>\begin{align}
p \vee q \\
\neg p \vee r \\
\therefore \overline{q \vee r} \\
\end{align}</math>
| <math>((p \vee q) \wedge (\neg p \vee r)) \rightarrow (q \vee r)</math>
| Resolution
|}
 
All rules use the basic logic operators. A complete table of "logic operators" is shown by a [[truth table]], giving definitions of all the possible (16) truth functions of 2 [[Boolean algebra (logic)|boolean variables]] (''p'', ''q''):
 
{| class="wikitable" style="margin:1em auto 1em auto; text-align:center;"
|-
! ''p'' || ''q''
|
! &nbsp;0&nbsp; || &nbsp;1&nbsp; || &nbsp;2&nbsp; || &nbsp;3&nbsp; || &nbsp;4&nbsp; || &nbsp;5&nbsp;  || &nbsp;6&nbsp; || &nbsp;7&nbsp;
|
!| &nbsp;8&nbsp; || &nbsp;9&nbsp; || 10 || 11 || 12 || 13 || 14 || 15
|-
! T || T
| || F || F || F || F || F || F || F || F || || T || T || T || T || T || T || T || T
|-
! T || F
| || F || F || F || F || T || T || T || T || || F || F || F || F || T || T || T || T
|-
! F || T
| || F || F || T || T || F || F || T || T || || F || F || T || T || F || F || T || T
|-
! F || F
| || F || T || F || T || F || T || F || T || || F || T || F || T || F || T || F || T
|}
 
where T = true and F = false, and, the columns are the logical operators: '''0''', false, [[Contradiction]]; '''1''', NOR, [[Logical NOR]]; '''2''', [[Converse nonimplication]]; '''3''', '''¬p''', [[Negation]]; '''4''', [[Material nonimplication]]; '''5''', '''¬q''', Negation; '''6''', XOR, [[Exclusive disjunction]]; '''7''', NAND, [[Logical NAND]]; '''8''', AND, [[Logical conjunction]]; '''9''', XNOR, [[If and only if]], [[Logical biconditional]]; '''10''', '''q''', [[Projection function]]; '''11''', if/then, [[Logical implication]]; '''12''', '''p''', Projection function;  '''13''', then/if, [[Converse implication]]; '''14''', OR, [[Logical disjunction]]; '''15''', true, [[Tautology (logic)|Tautology]].
 
Each logic operator can be used in an assertion about variables and operations, showing a basic rule of inference. Examples:
* The column-14 operator (OR), shows ''Addition rule'': when ''p''=T (the hypothesis selects the first two lines of the table), we see (at column-14) that ''p''∨''q''=T.
*: We can see also that, with the same premise, another conclusions are valid: columns 12, 14 and 15 are T.
* The column-8 operator (AND), shows ''Simplification rule'': when ''p''∧''q''=T (first line of the table), we see that ''p''=T.
*: With this premise, we also conclude that ''q''=T, ''p''∨''q''=T, etc. as showed by columns 9-15.
* The column-11 operator (IF/THEN), shows ''Modus ponens rule'': when ''p''→''q''=T and ''p''=T only one line of the truth table (the first) satisfies these two conditions. On this line, ''q'' is also true. Therefore, whenever p → q is true and p is true, q must also be true.
Machines and well-trained people use this [[Lookup table|look at table approach]] to do basic inferences, and to check if other inferences (for the same premises) can be obtained.
 
===Example 1===
Let us consider the following assumptions: "If it rains today, then we will not go on a canoe today. If we do not go on a canoe trip today, then we will go on a canoe trip tomorrow. Therefore (Mathematical symbol for "therefore" is <math>\therefore</math>), if it rains today, we will go on a canoe trip tomorrow.
To make use of the rules of inference in the above table we let <math>p</math> be the proposition "If it rains today", <math>q</math> be " We will not go on a canoe today" and let <math>r</math> be "We will go on a canoe trip tomorrow". Then this argument is of the form:
 
<math>\begin{align}
p \rightarrow q\\
q \rightarrow r\\
\therefore \overline{p \rightarrow r} \\
\end{align}</math>
 
===Example 2===
Let us consider a more complex set of assumptions: "It is not sunny today and it is colder than yesterday". "We will go swimming only if it is sunny", "If we do not go swimming, then we will have a barbecue", and "If we will have a barbecue, then we will be home by sunset" lead to the conclusion "We will be home before sunset."
Proof by rules of inference: Let <math>p</math> be the proposition "It is sunny this today", <math>q</math> the proposition "It is colder than yesterday", <math>r</math> the proposition "We will go swimming", <math>s</math> the proposition "We will have a barbecue", and <math>t</math> the proposition "We will be home by sunset". Then the hypotheses become <math>\neg p \wedge q, r \rightarrow p, \neg r \rightarrow s</math> and <math>s \rightarrow t</math>. Using our intuition we conjecture that the conclusion might be <math>t</math>. Using the Rules of Inference table we can proof the conjecture easily:
{| class="wikitable"
|-
! Step
! Reason
|-
| 1.<math>\neg p \wedge q</math>
| Hypothesis
|-
| 2. <math>\neg p</math>
| Simplification using Step 1
|-
| 3. <math>r \rightarrow p</math>
| Hypothesis
|-
| 4. <math>\neg r</math>
| Modus tollens using Step 2 and 3
|-
| 5. <math>\neg r \rightarrow s</math>
| Hypothesis
|-
| 6. <math>s</math>
| Modus ponens using Step 4 and 5
|-
| 7. <math>s \rightarrow t</math>
| Hypothesis
|-
| 8. <math>t</math>
| Modus ponens using Step 6 and 7
|}
 
==References==
<references/>
 
{{Logic}}
 
{{DEFAULTSORT:List Of Rules Of Inference}}
[[Category:Rules of inference|*]]
[[Category:Mathematics-related lists|Rules of inference]]
[[Category:Philosophy-related lists|Rules of inference]]
 
[[de:Schlussregel]]
[[it:Elenco di regole di inferenza]]
[[he:חוקי היקש]]

Latest revision as of 16:19, 23 December 2014

I woke up yesterday and realized - Now I have been single for a while and after much bullying from friends I now locate myself signed-up for on line dating. They assured me that there are lots of sweet, ordinary and interesting people to meet, therefore here goes the pitch!
I make an effort to stay as physically healthy as potential coming to the gymnasium several-times per week. I appreciate my sports and make an effort to play or view as numerous a potential. Being winter I am going to frequently at Hawthorn matches. Note: I have seen the carnage of fumbling suits at stocktake revenue, In case that you really contemplated purchasing a sport I do not brain.
My friends and household are amazing and spending some time luke bryan tickets indianapolis with them at bar gigabytes or meals is constantly vital. As I discover that you can do not get a decent dialogue luke bryan tickets houston together with the noise I haven't ever been in to night clubs. I likewise got two unquestionably cheeky and very cute dogs who are always excited to meet new folks.



Here is my weblog :: luke bryan tour with