|
|
Line 1: |
Line 1: |
| In [[decision theory]] and quantitative [[policy analysis]], the '''expected value of including information (EVIU)''' is the expected difference in the value of a decision based on a [[probabilistic analysis]] versus a decision based on an analysis that ignores [[uncertainty]].<ref>{{cite book |author=Morgan, M. Granger and Henrion, Max |chapter=Chap. 12 |title=Uncertainty: A Guide to Dealing with Uncertainty in Quantitative Risk and Policy Analysis |publisher=Cambridge University Press |year=1990 |isbn=0-521-36542-2 }}</ref><ref>{{Cite thesis |degree=Ph.D. |title=The value of knowing how little you know: The advantages of a probabilistic treatment of uncertainty in policy analysis |author=Henrion, M. |year=1982 |publisher=Carnegie Mellon University }}</ref>
| | Soda or pop will most likely always be shunned. Soda is loaded with unhealthy carbohydrates and sugar [http://raspberrytrimdiet.net/ Raspberry Trim Reviews] that can create your cravings stronger. Rather, instead associated with those unhealthy drinks, it is unquestionably best invest with a delicious glass of water to quench your desire.<br><br>The truth is that it's a really tough to actually reduce weight via healthy eating plan. The problem with most of those is they will aim to relieve weight promptly. Their target is to lessen 10 pounds or so in 30 days. This is where problem starts. When you use diet lower weight, cannot reduce ten pounds per month - not at all. Secondly, you need a long time as well as patience to shed pounds. It does not work overnight or even in a few weeks. You have to stay to principle for a couple of.<br><br>How old are you can? This is another question tackle as start your find the best weight loss pills. In order to are in your 20s you'll then not in order to use exactly the same supplement as somebody who's over age of 41. The older acquire the more you do focus from the products that on the market, too as what exactly is safest of your body as well time of your life.<br><br>If an individual might be having trouble keeping your weight-loss plan when you are out to eat, undoubtedly are a ways additional medications this easier. You will, of course, want the healthier options, so check out the nutrition regarding your meal before you order this situation. Add extra vegetables, and choose foods that are fresh, baked, steamed or roasted.<br><br>Add more food things to your diet preferably healthy food items. Build for customers . to get some new eating habits or eating schedules. Keep eating whatever you eat, just add several more in order to the lay out.<br><br>These are located some in the well-known weight pitfalls. Are receiving practicing these for recent years months, better refrain from undertaking them now. Modify and perform the ideal concern. Check with specialists, check out [http://raspberrytrimdiet.net/ Raspberry Trim] ketone or Acerola Cherry, study health posts and testimonies.<br><br>What Raspberry Trim Review need to raise your diet plans? [http://raspberrytrimdiet.net/ Raspberry Trim] Well, add fruits, vegetables, soups, juices, water, calorie-free beverages, salads and just what has fewer calories.<br><br>As soon as you're fired up, you can start setting your goals already. Set a target weight along with end of your program and point out the parts anyone really to help work on. Then set a time full frame on how a lot of time you'll give yourself in order to achieve these actions. |
| | |
| == Background ==
| |
| | |
| Decisions must be made every day in the ubiquitous presence of uncertainty. For most day-to-day decisions, various [[heuristics]] are used to act reasonably in the presence of uncertainty, often with little thought about its presence. However, for larger high-stakes decisions or decisions in highly public situations, decision makers may often benefit from a more systematic treatment of their decision problem, such as through quantitative analysis. To facilitate methodical analysis, while retaining transparency in the decision making process, analysts make use of quantitative modeling software such as [[Analytica]]. The academic field that focuses on this style of decision making and analysis is known as [[decision analysis]].
| |
| | |
| When building a quantitative decision model, a model builder identifies various relevant factors, and encodes these as ''input variables''. From these inputs, other quantities, called ''result variables'', can be computed; these provide information for the decision maker. For example, in the example detailed below, I must decide how soon before my flight to leave for the airport (my decision). One input variable is how long it takes to drive from my house to the airport parking garage. From this and other inputs, the model can compute whether I'm likely to miss the flight and what the net cost (in minutes) will be for various decisions.
| |
| | |
| To reach a decision, a very common practice is to ignore uncertainty. Decisions are reached through quantitative analysis and model building by simply using a ''best guess'' (single value) for each input variable. Decisions are then made on computed ''point estimates''. In many cases, however, ignoring uncertainty can lead to very poor decisions, with estimations for result variables often misleading the decision maker<ref>{{cite book |author=Danziger, Jeff; [http://www.drsamsavage.com Sam L. Savage] |title=The Flaw of Averages: Why We Underestimate Risk in the Face of Uncertainty |publisher=Wiley |location=New York |year=2009 |isbn=0-471-38197-7 |url=http://www.flawofaverages.com}}</ref>
| |
| | |
| An alternative to ignoring uncertainty in quantiative decision models is to explicitly encode uncertainty as part of the model. Due to the adoption of powerful software tools such as [[Analytica]] that allows representations of uncertainty to be explicitly encoded, along with high availability of computation power, this practice is becoming more commonplace among [[decision analysis|decision analytic]] modelers. With this approach, a [[probability distribution]] is provided for each input variable, rather than a single best guess. The [[variance]] in that distribution reflects the degree of [[Bayesian probability|subjective uncertainty]] (or lack of knowledge) in the input quantity. The software tools then use methods such as [[Monte Carlo analysis]] to propagate the uncertainty to result variables, so that a decision maker obtains an explicit picture of the impact that uncertainty has on his decisions, and in many cases can make a much better decision as a result.
| |
| | |
| When comparing the two approaches—ignoring uncertainty versus modeling uncertainty explicitly—the natural question to ask is how much difference it really makes to the quality of the decisions reached. In the 1960s, [[Ronald A. Howard]] proposed<ref>{{cite journal |author=Howard, Ron A. |title=Information value theory |journal=IEEE Transactions on Systems Science and Cybernetics |volume=1 |pages=22–6 |year=1966 }}</ref> one such measure, the [[expected value of perfect information]] (EVPI), a measure of how much it would be worth to learn the "true" values for all uncertain input variables. While providing a highly useful measure of sensitivity to uncertainty, the EVPI does not directly capture the actual improvement in decisions obtained from explicitly representing and reasoning about uncertainty. For this, Max Henrion, in his Ph.D. thesis, introduced the ''expected value of including uncertainty'' (EVIU), the topic of this article.
| |
| | |
| == Formalization ==
| |
| | |
| Let
| |
| | |
| :<math>
| |
| \begin{array}{ll}
| |
| d\in D & \text{the decision being made, chosen from space } D
| |
| \\
| |
| x\in X & \text{the uncertain quantity, with true value in space } X
| |
| \\
| |
| U(d,x) & \text{the utility function}
| |
| \\
| |
| f(x) & \text{your prior subjective probability distribution (density function) on } x
| |
| \end{array}
| |
| </math>
| |
| | |
| When not including uncertainty, you find the optimal decision using only <math>E[x]</math>, the expected value of the uncertain quantity. Hence, the decision ''ignoring uncertainty'' is given by:
| |
| | |
| :<math>
| |
| d_{iu} = {\arg\max_{d}} ~ U(d,E[x])
| |
| </math>
| |
| | |
| The optimal decision taking uncertainty into account is the standard Bayes decision that maximizes expected utility:
| |
| | |
| :<math>
| |
| d^* = {\arg\max_d} {\int U(d,x) f(x) \, dx}
| |
| </math> | |
| | |
| The EVIU is the difference in expected utility between these two decisions:
| |
| :<math>
| |
| EVIU = \int_{X} \left[ U(d^*,x) - U(d_{iu},x) \right] f(x) \, dx
| |
| </math>
| |
| | |
| The uncertain quantity ''x'' and decision variable ''d'' may each be composed of many scalar variables, in which case the spaces ''X'' and ''D'' are each vector spaces.
| |
| | |
| == Example ==
| |
| | |
| [[File:EVIU diagram.png|frame|[[Analytica]] diagram of EVIU model]]
| |
| | |
| The plane catching example described here is taken, with permission from [http://lumina.com Lumina Decision Systems], from an example model shipped with the [[Analytica]] visual modeling software.
| |
| | |
| The diagram shows an [[influence diagram]] depiction of an [[Analytica]] model for deciding how early a person should leave home in order to catch a flight at the airport. The single decision, in the green rectangle, is the number of minutes that one will decide to leave prior to the plane's departure time. Four uncertain variables appear on the diagram in cyan ovals: The time required to drive from home to the airport's parking garage (in minutes), time to get from the parking garage to the gate (in minutes), the time before departure that one must be at the gate, and the loss (in minutes) incurred if the flight is missed. Each of these nodes contains a probability distribution, viz:
| |
| | |
| Time_to_drive_to_airport := [[Lognormal Distribution|LogNormal]](median:60,gsdev:1.3)
| |
| Time_from_parking_to_gate := [[Lognormal Distribution|LogNormal]](median:10,gsdev:1.3)
| |
| Gate_time_before_departure := [[Triangular Distribution|Triangular]](min:20,mode:30,max:40)
| |
| Loss_if_miss_the_plane := [[Lognormal Distribution|LogNormal]](median:400,stddev:100)
| |
| | |
| Each of these distributions is taken to be [[statistically independent]]. The probability distribution for the first uncertain variable, ''Time_to_drive_to_airport'', with [[median]] 60 and a [[geometric standard deviation]] of 1.3, is depicted in this graph:
| |
| | |
| [[File:EVIU time to drive to airport.png]] | |
| | |
| The model calculates the cost (the red hexagonal variable) as the number of minutes (or minute equivalents) consumed to successfully board the plane. If one arrive too late, one will miss one's plane and incur the large loss (negative utility) of having to wait for the next flight. If one arrives too early, one incurs the cost of a needlessly long wait for the flight.
| |
| | |
| Models that utilize EVIU may use a [[utility function]], or equivalently they may utilize a [[loss function]], in which case the [[utility function]] is just the negative of the [[loss function]]. In either case, the EVIU will be positive. The main difference is just that with a loss function, the decision is made by minimizing loss rather than by maximizing utility. The example here uses a [[loss function]], Cost.
| |
| | |
| The definitions for each of the computed variables is thus:
| |
| | |
| Time_from_home_to_gate := Time_to_drive_to_airport + Time_from_parking_to_gate + Loss_if_miss_the_plane
| |
| Value_per_minute_at_home := 1
| |
| | |
| Cost := Value_per_minute_at_home * Time_I_leave_home +
| |
| (If Time_I_leave_home < Time_from_home_to_gate Then Loss_if_miss_the_plane Else 0)
| |
| | |
| The following graph displays the expected value taking uncertainty into account (the smooth blue curve) to the expected utility ignoring uncertainty, graphed as a function of the decision variable.
| |
| | |
| [[File:EVIU comparison.png]]
| |
| | |
| When uncertainty is ignored, one acts as though the flight will be made with certainty as long as one leaves at least 100 minutes before the flight, and will miss the flight with certainty if one leaves any later than that. Because one acts as if everything is certain, the optimal action is to leave exactly 100 minutes (or 100 minutes, 1 second) before the flight.
| |
| | |
| When uncertainty is taken into account, the expected value smooths out (the blue curve), and the optimal action is to leave 140 minutes before the flight. The expected value curve, with a decision at 100 minutes before the flight, shows the expected cost when ignoring uncertainty to be 313.7 minutes, while the expected cost when one leaves 140 minute before the flight is 151 minutes. The difference between these two is the EVIU:
| |
| | |
| :<math>EVIU = 313.7 - 151 = 162.7\text{ minutes} \,</math>
| |
| | |
| In other words, if uncertainty is explicitly taken into account when the decision is made, an average savings of 162.7 minutes will be realized.
| |
| | |
| == Relation to expected value of perfect information (EVPI) ==
| |
| | |
| Both EVIU and [[EVPI]] compare the expected value of the Bayes' decision with another decision made without uncertainty. For EVIU this other decision is made when the uncertainty is ''ignored'', although it is there, while for [[EVPI]] this other decision is made after the uncertainty is ''removed'' by obtaining perfect information about ''x''.
| |
| | |
| The [[EVPI]] is the expected cost of being uncertain about ''x'', while the EVIU is the additional expected cost of assuming that one is certain.
| |
| | |
| The EVIU, like the EVPI, gives expected value in terms of the units of the utility function.
| |
| | |
| ==See also==
| |
| *[[Expected value of perfect information]] (EVPI)
| |
| *[[Expected value of sample information]]
| |
| *[[Bulk Dispatch Lapse]]
| |
| | |
| ==References==
| |
| {{Reflist}}
| |
| | |
| {{DEFAULTSORT:Expected Value Of Including Uncertainty}}
| |
| [[Category:Decision theory]]
| |
| [[Category:Game theory]]
| |
Soda or pop will most likely always be shunned. Soda is loaded with unhealthy carbohydrates and sugar Raspberry Trim Reviews that can create your cravings stronger. Rather, instead associated with those unhealthy drinks, it is unquestionably best invest with a delicious glass of water to quench your desire.
The truth is that it's a really tough to actually reduce weight via healthy eating plan. The problem with most of those is they will aim to relieve weight promptly. Their target is to lessen 10 pounds or so in 30 days. This is where problem starts. When you use diet lower weight, cannot reduce ten pounds per month - not at all. Secondly, you need a long time as well as patience to shed pounds. It does not work overnight or even in a few weeks. You have to stay to principle for a couple of.
How old are you can? This is another question tackle as start your find the best weight loss pills. In order to are in your 20s you'll then not in order to use exactly the same supplement as somebody who's over age of 41. The older acquire the more you do focus from the products that on the market, too as what exactly is safest of your body as well time of your life.
If an individual might be having trouble keeping your weight-loss plan when you are out to eat, undoubtedly are a ways additional medications this easier. You will, of course, want the healthier options, so check out the nutrition regarding your meal before you order this situation. Add extra vegetables, and choose foods that are fresh, baked, steamed or roasted.
Add more food things to your diet preferably healthy food items. Build for customers . to get some new eating habits or eating schedules. Keep eating whatever you eat, just add several more in order to the lay out.
These are located some in the well-known weight pitfalls. Are receiving practicing these for recent years months, better refrain from undertaking them now. Modify and perform the ideal concern. Check with specialists, check out Raspberry Trim ketone or Acerola Cherry, study health posts and testimonies.
What Raspberry Trim Review need to raise your diet plans? Raspberry Trim Well, add fruits, vegetables, soups, juices, water, calorie-free beverages, salads and just what has fewer calories.
As soon as you're fired up, you can start setting your goals already. Set a target weight along with end of your program and point out the parts anyone really to help work on. Then set a time full frame on how a lot of time you'll give yourself in order to achieve these actions.