|
|
Line 1: |
Line 1: |
| {{Probability distribution
| | Hello, I'm Clifton, a 21 year old from Cavaillon, France.<br>My hobbies include (but are not limited to) Gaming, Magic and watching Grey's Anatomy.<br><br>My web-site - [http://tinyurl.com/q6d8aya Cheap ghd uk] |
| | name = Beta Negative Binomial
| |
| | type = mass
| |
| | pdf_image = No image available
| |
| | cdf_image = No image available
| |
| | notation =
| |
| | parameters = <math>\alpha > 0</math> [[shape parameter|shape]] ([[real number|real]])<br /><math>\beta > 0</math> [[shape parameter|shape]] ([[real number|real]]) <br> ''n'' ∈ [[Natural numbers|'''N'''<sub>0</sub>]] — number of trials
| |
| | support = ''k'' ∈ { 0, 1, 2, 3, ... }
| |
| | pdf = <math>\frac{n^{(k)}\alpha^{(n)}\beta^{(k)}}{k!(\alpha+\beta)^{(n)}(n+\alpha+\beta)^{(k)}}</math><br>Where <math>x^{(n)}</math> is the '''rising''' [[Pochhammer symbol]]
| |
| | cdf =
| |
| | mean = <math>\begin{cases}
| |
| \frac{n\beta}{\alpha-1} & \text{if}\ \alpha>1 \\
| |
| \infty & \text{otherwise}\ \end{cases}</math>
| |
| | median =
| |
| | mode =
| |
| | variance = <math>\begin{cases}
| |
| \frac{n(\alpha+n-1)\beta(\alpha+\beta-1)}{(\alpha-2){(\alpha-1)}^2} & \text{if}\ \alpha>2 \\
| |
| \infty & \text{otherwise}\ \end{cases}</math>
| |
| | skewness = <math>\begin{cases}
| |
| \frac{(\alpha+2n-1)(\alpha+2\beta-1)}{(\alpha-3)\sqrt{\frac{n(\alpha+n-1)\beta(\alpha+\beta-1)}{\alpha-2}}} & \text{if}\ \alpha>3 \\
| |
| \infty & \text{otherwise}\ \end{cases}</math>
| |
| | kurtosis =
| |
| | entropy =
| |
| | mgf =
| |
| | char =
| |
| }}
| |
| | |
| In [[probability theory]], a '''beta negative binomial distribution''' is the [[probability distribution]] of a [[discrete probability distribution|discrete]] [[random variable]] ''X'' equal to the number of failures needed to get ''n'' successes in a sequence of [[independence (probability theory)|independent]] [[Bernoulli trial]]s where the probability ''p'' of success on each trial is constant within any given experiment but is itself a random variable following a [[beta distribution]], varying between different experiments. Thus the distribution is a [[compound probability distribution]].
| |
| | |
| This distribution has also been called both the '''inverse Markov-Pólya distribution''' and the '''generalized Waring distribution'''.<ref name=Johnson>Johnson et al. (1993)</ref> A shifted form of the distribution has been called the '''beta-Pascal distribution'''.<ref name=Johnson/>
| |
| | |
| If parameters of the beta distribution are ''α'' and ''β'' , and if
| |
| :<math>
| |
| X \mid p \sim \mathrm{NB}(n,p),
| |
| </math>
| |
| where
| |
| :<math>
| |
| p \sim \textrm{B}(\alpha,\beta),
| |
| </math>
| |
| then the marginal distribution of ''X'' is a beta negative binomial distribution:
| |
| :<math>
| |
| X \sim \mathrm{BNB}(n,\alpha,\beta).
| |
| </math>
| |
| | |
| In the above, NB(''n'', ''p'') is the [[negative binomial distribution]] and B(''α'', ''β'') is the [[beta distribution]].
| |
| | |
| ==PMF expressed with Gamma==
| |
| Since the rising Pochhammer symbol can be expressed in terms of the [[Gamma function]], the numerator of the PMF as given can be expressed as:
| |
| :<math>\frac{\Gamma(n+k)\Gamma(\alpha+n)\Gamma(\beta+k)}{\Gamma(n)\Gamma(\alpha)\Gamma(\beta)}</math>.
| |
| Likewise, the denominator can be rewritten as:
| |
| :<math>\frac{\Gamma(\alpha+\beta)\Gamma(\alpha+\beta+n)}{k!\Gamma(\alpha+\beta+n)\Gamma(\alpha+\beta+n+k)}</math>,
| |
| and the two <math>{\Gamma(\alpha+\beta+n)}</math> terms cancel out, leaving:
| |
| :<math>\frac{\Gamma(\alpha+\beta)}{k!\Gamma(\alpha+\beta+n+k)}</math>.
| |
| As <math>\frac{\Gamma(n+k)}{k!\Gamma(n)} = \binom{n+k-1}k</math>, the PMF can be rewritten as:
| |
| :<math>\binom{n+k-1}k\frac{\Gamma(\alpha+n)\Gamma(\beta+k)\Gamma(\alpha+\beta)}{\Gamma(\alpha+\beta+n+k)\Gamma(\alpha)\Gamma(\beta)}</math>.
| |
| ===PMF expressed with Beta===
| |
| Using the [[beta function]], the PMF is:
| |
| :<math>\binom{n+k-1}k\frac{\Beta(\alpha+n,\beta+k)}{\Beta(\alpha,\beta)}</math>.
| |
| Replacing the [[binomial coefficient]] by a beta function, the PMF can also be written:
| |
| :<math>\frac{\Beta(\alpha+n,\beta+k)}{k\Beta(\alpha,\beta)\Beta(n,k)}</math>.
| |
| | |
| ==Notes==
| |
| {{reflist}}
| |
| | |
| ==References==
| |
| *Jonhnson, N.L.; Kotz, S.; Kemp, A.W. (1993) ''Univariate Discrete Distributions'', 2nd edition, Wiley ISBN 0-471-54897-9 (Section 6.2.3)
| |
| *Kemp, C.D.; Kemp, A.W. (1956) "Generalized hypergeometric distributions'', ''[[Journal of the Royal Statistical Society]]'', Series B, 18, 202–211
| |
| *Wang, Zhaoliang (2011) "One mixed negative binomial distribution with application", ''Journal of Statistical Planning and Inference'', 141 (3), 1153-1160 {{DOI|10.1016/j.jspi.2010.09.020}}
| |
| | |
| ==External links==
| |
| * Interactive graphic: [http://www.math.wm.edu/~leemis/chart/UDR/UDR.html Univariate Distribution Relationships]
| |
| | |
| {{ProbDistributions|discrete-infinite}}
| |
| | |
| [[Category:Discrete distributions]]
| |
| [[Category:Compound distributions]]
| |
| [[Category:Factorial and binomial topics]]
| |
| [[Category:Probability distributions]]
| |
Hello, I'm Clifton, a 21 year old from Cavaillon, France.
My hobbies include (but are not limited to) Gaming, Magic and watching Grey's Anatomy.
My web-site - Cheap ghd uk