Jarque–Bera test: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
No edit summary
No edit summary
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
In [[quantum computing]], the '''quantum Fourier transform''' is a [[linear transformation]] on [[qubit|quantum bits]], and is the quantum analogue of the [[discrete Fourier transform]]. The quantum Fourier transform is a part of many [[quantum algorithms]], notably [[Shor's algorithm]] for factoring and computing the [[discrete logarithm]], the [[quantum phase estimation algorithm]] for estimating the [[eigenvalue]]s of a [[unitary operator]], and algorithms for the [[hidden subgroup problem]].
Hi there! :) My name is Dong, I'm a student studying Creative Writing from Tirrenia, Italy.<br><br>Stop by my web site :: canon powershot sx30 is ([http://myfirstdslr.com/ see it here])
 
The quantum Fourier transform can be performed efficiently on a quantum computer, with a particular decomposition into a product of simpler [[unitary matrix|unitary matrices]]. Using a simple decomposition, the discrete Fourier transform can be implemented as a [[quantum circuit]] consisting of only <math>O(n^2)</math> [[Hadamard gate]]s and controlled [[phase shift gate]]s, where <math>n</math> is the number of qubits.<ref>{{cite book | author= [[Michael Nielsen]] and Isaac Chuang | title=Quantum Computation and Quantum Information | publisher=Cambridge University Press | location=Cambridge | year=2000 | isbn=0-521-63503-9 | oclc= 174527496}}</ref> This can be compared with the classical discrete Fourier transform, which takes <math>O(n2^n)</math> gates (where <math>n</math> is the number of bits), which is exponentially more than <math>O(n^2)</math>. However, the quantum Fourier transform acts on a quantum state, whereas the classical Fourier transform acts on a vector, so not every task that uses the classical Fourier transform can take advantage of this exponential speedup.
 
The best quantum Fourier transform algorithms known today require only <math>O(n \log n)</math> gates to achieve an efficient approximation.<ref>L. Hales, S. Hallgren, An improved quantum Fourier transform algorithm and applications, Proceedings of the 41st Annual Symposium on Foundations of Computer Science, p.&nbsp;515, November 12–14, 2000</ref>
 
== Definition ==
The quantum Fourier transform is the classical discrete Fourier transform applied to the vector of amplitudes of a quantum state. The classical (unitary) Fourier transform acts on a [[vector (mathematics and physics)|vector]] in <math>\mathbb{C}^N</math>, (''x''<sub>0</sub>, ..., ''x''<sub>''N''−1</sub>) and maps it to the vector (''y''<sub>0</sub>, ..., ''y''<sub>''N''−1</sub>) according to the formula:
 
:<math>y_k = \frac{1}{\sqrt{N}} \sum_{j=0}^{N-1} x_j \omega^{jk}</math>
           
where <math>\omega = e^{\frac{2 \pi i}{N}}</math>  is a primitive ''N''<sup>th</sup> [[root of unity]].
 
Similarly, the quantum Fourier transform acts on a quantum state <math>\sum_{i=0}^{N-1} x_i |i\rangle</math> and maps it to a quantum state <math>\sum_{i=0}^{N-1} y_i |i\rangle</math> according to the formula:
 
:<math>y_k = \frac{1}{\sqrt{N}} \sum_{j=0}^{N-1} x_j \omega^{jk}.</math>
This can also be expressed as the map
 
:<math>|j\rangle \mapsto  \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} \omega^{jk} |k\rangle. </math>
 
Equivalently, the quantum Fourier transform can be viewed as a unitary matrix acting on quantum state vectors, where the unitary matrix <math>F_N</math> is given by
:<math>
F_N = \frac{1}{\sqrt{N}} \begin{bmatrix}
1&1&1&1&\cdots &1 \\
1&\omega&\omega^2&\omega^3&\cdots&\omega^{N-1} \\
1&\omega^2&\omega^4&\omega^6&\cdots&\omega^{2(N-1)}\\ 1&\omega^3&\omega^6&\omega^9&\cdots&\omega^{3(N-1)}\\
\vdots&\vdots&\vdots&\vdots&&\vdots\\
1&\omega^{N-1}&\omega^{2(N-1)}&\omega^{3(N-1)}&\cdots&\omega^{(N-1)(N-1)}
\end{bmatrix}.
</math>
 
== Properties ==
 
=== Unitarity ===
Most of the properties of the quantum Fourier transform follow from the fact that it is a [[unitary transformation]]. This can be checked by performing [[matrix multiplication]] and ensuring that the relation <math>FF^{\dagger}=F^{\dagger}F=I</math> holds, where <math>F^\dagger</math> is the [[Hermitian adjoint]] of <math>F</math>. Alternately, one can check that vectors of [[norm (mathematics)|norm]] 1 get mapped to vectors of norm 1.
 
From the unitary property it follows that the inverse of the quantum Fourier transform is the Hermitian adjoint of the Fourier matrix, thus <math>F^{-1}=F^{\dagger}</math>. Since there is an efficient quantum circuit implementing the quantum Fourier transform, the circuit can be run in reverse to perform the inverse quantum Fourier transform. Thus both transforms can be efficiently performed on a quantum computer.
 
== Circuit implementation ==
[[Image:Quantum Fourier transform on n qubits.svg|600px|thumb|[[Quantum circuit]] representation of the quantum Fourier transform]]
 
The quantum Fourier transform can be approximately implemented for any ''N''; however, the implementation for the case where ''N'' is a power of 2 is much simpler. Suppose ''N'' = 2<sup>''n''</sup>.  We  have the orthonormal basis consisting of the vectors
:<math> |0\rangle, \ldots , |2^n - 1\rangle. </math>
 
Each basis state index can be represented in binary form
:<math> | x \rangle = | x_1 x_2 \ldots x_n \rangle = | x_1 \rangle \otimes | x_2 \rangle \otimes \cdots \otimes | x_n \rangle</math>
where
:<math> x = x_1 2^{n-1} + x_2 2^{n-2} +\cdots  + x_n 2^0.\quad </math>
 
Similarly, we also adopt the notation
:<math> [0. x_1 \ldots x_m] = \sum_{k = 1}^m x_k 2^{-k}.</math>
For instance, <math>[0.x_1] = \frac{x_1}{2}</math> and <math>[0.x_1 x_2] = \frac{x_1}{2}+\frac{x_2}{2^2}.</math>
 
With this notation, the action of the quantum Fourier transform can be expressed as:
:<math>|x_1 x_2 \ldots  x_n \rangle \mapsto \frac{1}{\sqrt{N}} \ \left(|0\rangle + e^{2 \pi i \, [0.x_n] }|1\rangle\right) \otimes \left(|0\rangle + e^{2 \pi i  \, [0.x_{n-1} x_n] }|1\rangle\right) \otimes \cdots \otimes \left(|0\rangle + e^{2 \pi i \, [0.x_1 x_2 \ldots x_n] }|1\rangle\right).</math>
 
In other words, the discrete Fourier transform, an operation on ''n''-qubits, can be factored into the tensor product of ''n'' single-qubit operations, suggesting it is easily represented as a [[quantum circuit]]. In fact, each of those single-qubit operations can be implemented efficiently using a [[Hadamard gate]] and [[Quantum_gate#Controlled_gates|controlled]] [[Quantum_gate#Phase_shift_gates|phase gate]]s. The first term requires one Hadamard gate, the next one requires a Hadamard gate and a controlled phase gate, and each following term requires an additional controlled phase gate. Summing up the number of gates gives <math>1 + 2 + \cdots + n = n(n+1)/2 = O(n^2)</math> gates, which is polynomial in the number of qubits.
 
== Example ==
 
Consider the quantum Fourier transform on 3 qubits. It is the following transformation:
 
:<math>|j\rangle \mapsto  \frac{1}{\sqrt{2^3}} \sum_{k=0}^{2^3-1} \omega^{jk} |k\rangle, </math>
where <math>\omega</math> is a primitive eighth [[root of unity]] satisfying <math>\omega^8=\left(e^{\frac{2\pi i}{8}}\right)^8=1</math> (since <math>N = 2^3 = 8</math>).
 
The matrix representing this transformation on 3 qubits is
 
:<math>
F_{2^3} = \frac{1}{\sqrt{2^3}} \begin{bmatrix} 1&1&1&1&1&1&1&1 \\
1&\omega&\omega^2&\omega^3&\omega^4&\omega^5&\omega^6&\omega^7 \\
1&\omega^2&\omega^4&\omega^6&\omega^8&\omega^{10}&\omega^{12}&\omega^{14} \\
1&\omega^3&\omega^6&\omega^9&\omega^{12}&\omega^{15}&\omega^{18}&\omega^{21} \\
1&\omega^4&\omega^8&\omega^{12}&\omega^{16}&\omega^{20}&\omega^{24}&\omega^{28} \\
1&\omega^5&\omega^{10}&\omega^{15}&\omega^{20}&\omega^{25}&\omega^{30}&\omega^{35} \\
1&\omega^6&\omega^{12}&\omega^{18}&\omega^{24}&\omega^{30}&\omega^{36}&\omega^{42} \\
1&\omega^7&\omega^{14}&\omega^{21}&\omega^{28}&\omega^{35}&\omega^{42}&\omega^{49} \\
\end{bmatrix} = \frac{1}{\sqrt{2^3}} \begin{bmatrix} 1&1&1&1&1&1&1&1 \\
1&\omega&\omega^2&\omega^3&\omega^4&\omega^5&\omega^6&\omega^7 \\
1&\omega^2&\omega^4&\omega^6&1&\omega^2&\omega^4&\omega^6 \\
1&\omega^3&\omega^6&\omega&\omega^4&\omega^7&\omega^2&\omega^5 \\
1&\omega^4&1&\omega^4&1&\omega^4&1&\omega^4 \\
1&\omega^5&\omega^2&\omega^7&\omega^4&\omega&\omega^6&\omega^3 \\
1&\omega^6&\omega^4&\omega^2&1&\omega^6&\omega^4&\omega^2 \\
1&\omega^7&\omega^6&\omega^5&\omega^4&\omega^3&\omega^2&\omega \\
\end{bmatrix}.
</math>
 
The 3-qubit quantum Fourier transform is the following operation:
:<math>|x_1, x_2, x_3 \rangle \mapsto \frac{1}{\sqrt{2^3}} \ \left(|0\rangle + e^{2 \pi i \, [0.x_3] }|1\rangle\right) \otimes \left(|0\rangle + e^{2 \pi i  \, [0.x_2 x_3] }|1\rangle\right) \otimes \left(|0\rangle + e^{2 \pi i \, [0.x_1 x_2 x_3] }|1\rangle\right).</math>
 
This quantum circuit implements the quantum Fourier transform on the quantum state <math>|x_1,x_2,x_3\rangle</math>.
 
[[File:Quantum Fourier transform on three qubits.svg|550px]]
 
The [[quantum gate]]s used in the circuit above are the [[Quantum_gate#Hadamard_gate|Hadamard gate]] and the [[Quantum_gate#Controlled_gates|controlled]] [[Quantum_gate#Phase_shift_gates|phase gate]] <math>R_\theta</math>.
 
As calculated above, the number of gates used is <math>n(n+1)/2</math> which is equal to 6, for&nbsp;''n''&nbsp;=&nbsp;3.
 
== References ==
<references/>
* [[K. R. Parthasarathy (probabilist)|K. R. Parthasarathy]], ''Lectures on Quantum Computation and Quantum Error Correcting Codes'' (Indian Statistical Institute, Delhi Center, June 2001)
* [[John Preskill]], ''Lecture Notes for Physics 229: Quantum Information and Computation'' (CIT, September 1998)
 
{{quantum computing}}
 
{{DEFAULTSORT:Quantum Fourier Transform}}
[[Category:Transforms]]
[[Category:Quantum algorithms]]

Latest revision as of 13:05, 1 November 2014

Hi there! :) My name is Dong, I'm a student studying Creative Writing from Tirrenia, Italy.

Stop by my web site :: canon powershot sx30 is (see it here)