Supertoroid: Difference between revisions
en>Brad7777 →References: changed category geometry to surfaces |
en>Squids and Chips m WPCleaner v1.26 - Repaired 1 link to disambiguation page - (You can help) - Interval |
||
Line 1: | Line 1: | ||
There are '''common integrals in quantum field theory''' that appear repeatedly.<ref> {{cite book | author=A. Zee | title=Quantum Field Theory in a Nutshell| publisher= Princeton University| year=2003 | id=ISBN 0-691-01019-6}} pp. 13-15 </ref> These integrals are all variations and generalizations of [[gaussian integral]]s to the complex plane and to multiple dimensions. Other integrals can be approximated by versions of the gaussian integral. Fourier integrals are also considered. | |||
==Variations on a simple gaussian integral== | |||
===Gaussian integral=== | |||
The first integral, with broad application outside of quantum field theory, is the [[gaussian integral]]. | |||
:<math> G \equiv \int_{-\infty}^{\infty} e^{-{1 \over 2} x^2}\,dx</math> | |||
In physics the factor of 1/2 in the argument of the exponential is common. | |||
Note: | |||
:<math> G^2 = \left ( \int_{-\infty}^{\infty} e^{-{1 \over 2} x^2}\,dx \right ) \cdot \left ( \int_{-\infty}^{\infty} e^{-{1 \over 2} y^2}\,dy \right ) = 2\pi \int_{0}^{\infty} r e^{-{1 \over 2} r^2}\,dr = 2\pi \int_{0}^{\infty} e^{- w}\,dw = 2 \pi.</math> | |||
Thus we obtain | |||
:<math> \int_{-\infty}^{\infty} e^{-{1 \over 2} x^2}\,dx = \sqrt{2\pi}. </math> | |||
===Slight generalization of the gaussian integral=== | |||
:<math> \int_{-\infty}^{\infty} e^{-{1 \over 2} a x^2}\,dx = \sqrt{2\pi \over a} </math> | |||
where we have scaled | |||
:<math> x \rightarrow {x \over \sqrt{a}} </math>. | |||
===Integrals of exponents and even powers of ''x''=== | |||
:<math> \int_{-\infty}^{\infty} x^2 e^{-{1 \over 2} a x^2}\,dx = -2{d\over da} \int_{-\infty}^{\infty} e^{-{1 \over 2} a x^2}\,dx = -2{d\over da} \left ( {2\pi \over a } \right ) ^{1\over 2} = \left ( {2\pi \over a } \right ) ^{1\over 2} {1\over a}</math> | |||
and | |||
:<math> \int_{-\infty}^{\infty} x^4 e^{-{1 \over 2} a x^2}\,dx = \left ( -2{d\over da} \right) \left ( -2{d\over da} \right) \int_{-\infty}^{\infty} e^{-{1 \over 2} a x^2}\,dx = \left ( -2{d\over da} \right) \left ( -2{d\over da} \right) \left ( {2\pi \over a } \right ) ^{1\over 2} = \left ( {2\pi \over a } \right ) ^{1\over 2} {3\over a^2}</math> | |||
In general | |||
:<math> \int_{-\infty}^{\infty} x^{2n} e^{-{1 \over 2} a x^2}\,dx = \left ( {2\pi \over a } \right ) ^{1\over {2}} {1\over a^{n}} \left ( 2n -1 \right ) \left ( 2n -3 \right ) \cdots 5 \cdot 3 \cdot 1 = \left ( {2\pi \over a } \right ) ^{1\over {2}} {1\over a^{n}} \left ( 2n -1 \right )!! </math> | |||
Note that the integrals of exponents and odd powers of x are 0, due to [[odd function|odd]] symmetry. | |||
===Integrals with a linear term in the argument of the exponent=== | |||
:<math> \int_{-\infty}^{\infty} \exp\left( -{1 \over 2} a x^2 + Jx\right ) dx </math> | |||
This integral can be performed by completing the square. | |||
:<math> \left( -{1 \over 2} a x^2 + Jx\right ) = -{1 \over 2} a \left ( x^2 - { 2 Jx \over a } + { J^2 \over a^2 } - { J^2 \over a^2 } \right ) = -{1 \over 2} a \left ( x - { J \over a } \right )^2 + { J^2 \over 2a } </math> | |||
:<math> | |||
\begin{align} | |||
& \int_{-\infty}^\infty \exp\left( -{1 \over 2} a x^2 + Jx\right) \, dx = \exp\left( { J^2 \over 2a } \right ) \int_{-\infty}^\infty \exp \left [ -{1 \over 2} a \left ( x - { J \over a } \right )^2 \right ] \, dx \\[8pt] | |||
& = \exp\left( { J^2 \over 2a } \right )\int_{-\infty}^\infty \exp\left( -{1 \over 2} a x^2 \right) \, dx = \left ( {2\pi \over a } \right ) ^{1\over 2} \exp\left( { J^2 \over 2a }\right ) | |||
\end{align} | |||
</math> | |||
===Integrals with an imaginary linear term in the argument of the exponent=== | |||
The integral | |||
:<math> \int_{-\infty}^{\infty} \exp\left( -{1 \over 2} a x^2 + iJx\right ) dx = \left ( {2\pi \over a } \right ) ^{1\over 2} \exp\left( -{ J^2 \over 2a }\right ) </math> | |||
is proportional to the [[Fourier transform]] of the gaussian where <math>J </math> is the [[conjugate variables | conjugate variable]] of <math>x </math>. | |||
By again completing the square we see that the Fourier transform of a gaussian is also a gaussian, but in the conjugate variable. The larger <math>a </math> is, the narrower the gaussian in <math>x </math> and the wider the gaussian in <math>J </math>. This is a demonstration of the [[uncertainty principle]]. | |||
===Integrals with a complex argument of the exponent=== | |||
The integral of interest is (for an example of an application see [[Relation between Schrödinger's equation and the path integral formulation of quantum mechanics]]) | |||
:<math> \int_{-\infty}^{\infty} \exp\left( {1 \over 2} i a x^2 + iJx\right ) dx. </math> | |||
We now assume that <math>a_{ }^{ }</math> and <math>J_{ }^{ }</math> may be complex. | |||
Completing the square | |||
:<math> \left( {1 \over 2} i a x^2 + iJx\right ) = {1\over 2} ia \left ( x^2 + {2Jx \over a} + \left ( { J \over a} \right )^2 - \left ( { J \over a} \right )^2 \right ) = -{1\over 2} {a \over i} \left ( x + {J\over a} \right )^2 - { iJ^2 \over 2a}. </math> | |||
By analogy with the previous integrals | |||
:<math> \int_{-\infty}^{\infty} \exp\left( {1 \over 2} i a x^2 + iJx\right ) dx = \left ( {2\pi i \over a } \right ) ^{1\over 2} \exp\left( { -iJ^2 \over 2a }\right ). </math> | |||
This result is valid as an integration in the complex plane as long as <math>a_{ }^{ }</math> has a positive imaginary part. | |||
==Gaussian integrals in higher dimensions== | |||
The one-dimensional integrals can be generalized to multiple dimensions.<ref> {{cite book | author=Frederick W. Byron and Robert W. Fuller | title=Mathematics of Classical and Quantum Physics | publisher= Addison-Wesley| year=1969 | id=ISBN 0-201-00746-2}}</ref> | |||
:<math> | |||
\int \exp\left( - \frac 1 2 x \cdot A \cdot x +J \cdot x \right) d^nx | |||
= | |||
\sqrt{\frac{(2\pi)^n}{\det A}} \exp \left( {1\over 2} J \cdot A^{-1} \cdot J \right) | |||
</math> | |||
Here <math>A</math> is a real [[symmetric matrix]]. | |||
This integral is performed by [[Diagonalizable matrix | diagonalization]] of <math>A</math> with an [[orthogonal matrix | orthogonal transformation]] | |||
:<math> | |||
D_{ }^{ } = O^{-1} A O = O^T A O | |||
</math> | |||
where <math>D</math> is a [[diagonal matrix]] and <math>O</math> is an [[orthogonal matrix]]. This decouples the variables and allows the integration to be performed as <math>n_{ }^{ }</math> one-dimensional integrations. | |||
This is best illustrated with a two-dimensional example. | |||
===Example: Simple gaussian integration in two dimensions=== | |||
The gaussian integral in two dimensions is | |||
:<math> | |||
\int \exp\left( - \frac 1 2 A_{ij} x^i x^j \right) d^2x | |||
= | |||
\sqrt{\frac{(2\pi)^2}{\det A}} | |||
</math> | |||
where <math> A </math> is a two-dimensional symmetric matrix with components specified as | |||
:<math> A = \bigl[ \begin{smallmatrix} | |||
a&c\\ c&b | |||
\end{smallmatrix} \bigr] | |||
</math> | |||
and we have used the [[Einstein summation convention]]. | |||
====Diagonalize the matrix==== | |||
The first step is to [[Diagonalizable matrix | diagonalize]] the matrix.<ref> {{cite book | author=Herbert S. Wilf | title=Mathematics for the Physical Sciences | publisher= Dover| year=1978 | id=ISBN 0-486-63635-6}}</ref> Note that | |||
:<math> A_{ij} x^i x^j \equiv x^T A x = x^T \left( O O^T\right) A \left( O O^T\right) x = \left( x^T O \right) \left( O^T A O \right) \left( O^T x \right) | |||
</math> | |||
where, since A is a real [[symmetric matrix]], we can choose <math>O</math> to be an [[orthogonal matrix]], and hence also a [[unitary matrix]]. | |||
We choose <math>O</math> such that | |||
:<math> D \equiv O^T A O | |||
</math> | |||
is diagonal. | |||
<math>O</math> can be obtained from the [[eigenvectors]] of <math>A</math>. | |||
=====Eigenvalues of ''A''===== | |||
To find the eigenvectors of <math>A</math> one first finds the [[eigenvalues]] <math>\lambda</math> of <math>A</math> given by | |||
:<math> \bigl[ \begin{smallmatrix} | |||
a&c\\ c&b | |||
\end{smallmatrix} \bigr] | |||
\bigl[ \begin{smallmatrix} | |||
u\\ v | |||
\end{smallmatrix} \bigr] = | |||
\lambda \bigl[ \begin{smallmatrix} | |||
u\\ v | |||
\end{smallmatrix} \bigr]. | |||
</math> | |||
The eigenvalues are solutions of the [[characteristic polynomial]] | |||
:<math> \left( a - \lambda \right) \left( b-\lambda\right) -c^2 = 0 </math> | |||
which are | |||
:<math> \lambda_{\pm} = {1\over 2}\left( a+b\right) \pm {1\over 2}\sqrt{ \left(a-b\right)^2+4c^2}. </math> | |||
=====Eigenvectors of ''A''===== | |||
Substitution of the eigenvalues back into the eigenvector equation yields | |||
:<math> v = -{ \left( a - \lambda_{\pm} \right)u \over c }</math> | |||
or | |||
:<math> v = -{cu \over \left( b - \lambda_{\pm} \right)}.</math> | |||
From the characteristic equation we know | |||
:<math> { \left( a - \lambda_{\pm} \right)\over c } = {c \over \left( b - \lambda_{\pm} \right)}.</math> | |||
Also note | |||
:<math> {\left( a - \lambda_{\pm} \right)\over c } = -{\left( b - \lambda_{\mp} \right) \over c}. </math> | |||
The eigenvectors can be written | |||
:<math> | |||
\begin{bmatrix} | |||
{1\over \eta}\\ - \left( { a - \lambda_{-} \over c\eta } \right) | |||
\end{bmatrix} | |||
</math> | |||
and | |||
:<math> | |||
\begin{bmatrix} | |||
- \left( { b - \lambda_{+} \over c\eta } \right) \\ { 1\over \eta} | |||
\end{bmatrix} | |||
</math> | |||
for the two eigenvectors. Here <math>\eta</math> is a normalizing factor given by | |||
:<math> | |||
\eta = \sqrt{ 1 + \left( { a - \lambda_{-} \over c } \right)^2 } = \sqrt{ 1 + \left( { b - \lambda_{+} \over c } \right)^2 }. | |||
</math> | |||
It is easily verified that the two eigenvectors are orthogonal to each other. | |||
=====Construction of the orthogonal matrix===== | |||
The orthogonal matrix is constructed by assigning the normalized eigenvectors as columns in the orthogonal matrix | |||
:<math> | |||
O = \begin{bmatrix} | |||
{1\over \eta } & -\left( { b - \lambda_{+} \over c \eta }\right) \\ -\left( { a - \lambda_{-} \over c \eta }\right) & {1\over \eta } | |||
\end{bmatrix}. | |||
</math> | |||
Note that the determinant of O is equal to one. | |||
If we define | |||
:<math> \sin \left( \theta \right) \equiv -\left( { a - \lambda_{-} \over c \eta }\right) </math> | |||
then the orthogonal matrix can be written | |||
:<math> | |||
O = \begin{bmatrix} | |||
\cos \left( \theta \right) & -\sin \left( \theta \right) \\ \sin \left( \theta \right) & \cos \left( \theta \right) | |||
\end{bmatrix} | |||
</math> | |||
which is simply a rotation of the eigenvectors. | |||
The inverse is | |||
:<math> | |||
O^{-1} = O^T = \begin{bmatrix} | |||
\cos \left( \theta \right) & \sin \left( \theta \right) \\ -\sin \left( \theta \right) & \cos \left( \theta \right) | |||
\end{bmatrix}. | |||
</math> | |||
=====Diagonal matrix===== | |||
The diagonal matrix becomes | |||
:<math> | |||
D = O^T A O = \begin{bmatrix} | |||
\lambda_{-}&0\\ 0 & \lambda_{+} | |||
\end{bmatrix} | |||
</math> | |||
with eigenvectors | |||
:<math> | |||
\begin{bmatrix} | |||
1\\ 0 | |||
\end{bmatrix} | |||
</math> | |||
and | |||
:<math> | |||
\begin{bmatrix} | |||
0\\ 1 | |||
\end{bmatrix} | |||
</math> | |||
=====Numerical example===== | |||
:<math> | |||
A = \begin{bmatrix} | |||
2&1\\ 1 & 1 | |||
\end{bmatrix} | |||
</math> | |||
The eigenvalues are | |||
:<math> | |||
\lambda_{\pm} = {3\over 2} \pm {\sqrt{ 5} \over 2}. | |||
</math> | |||
The eigenvectors are | |||
:<math> {1\over \eta} | |||
\begin{bmatrix} | |||
1\\ { -{1\over 2} - {\sqrt{ 5} \over 2} } | |||
\end{bmatrix} | |||
</math> | |||
and | |||
:<math> {1\over \eta} | |||
\begin{bmatrix} | |||
{ {1\over 2} + {\sqrt{ 5} \over 2 } } \\ 1 | |||
\end{bmatrix} | |||
</math> | |||
where | |||
:<math> \eta = \sqrt{ {5\over 2} + {\sqrt{5}\over 2} } | |||
</math> . | |||
The orthogonal vector is | |||
:<math> O = | |||
\begin{bmatrix} | |||
{1\over \eta} & {1\over \eta} \left({ {1\over 2} + {\sqrt{ 5} \over 2} }\right) \\ {1\over \eta} \left({ -{1\over 2} - {\sqrt{ 5} \over 2} }\right) & {1\over \eta} | |||
\end{bmatrix}. | |||
</math> | |||
It is easily verified that the determinant of O is 1. | |||
The inverse of O is | |||
:<math> O = | |||
\begin{bmatrix} | |||
{1\over \eta} & {1\over \eta} \left({ -{1\over 2} - {\sqrt{ 5} \over 2} }\right) \\ {1\over \eta} \left({ {1\over 2} + {\sqrt{ 5} \over 2} }\right) & {1\over \eta} | |||
\end{bmatrix}. | |||
</math> | |||
The diagonal matrix becomes | |||
:<math> D = O^TAO = | |||
\begin{bmatrix} | |||
\lambda_{-} &0\\ 0 & \lambda_{+} | |||
\end{bmatrix} = | |||
\begin{bmatrix} | |||
\left({ {3\over 2} - {\sqrt{ 5} \over 2} }\right)& 0\\ 0 & \left({ {3\over 2} + {\sqrt{ 5} \over 2} }\right) | |||
\end{bmatrix} | |||
</math> | |||
with the eigenvectors | |||
:<math> | |||
\begin{bmatrix} | |||
1\\ 0 | |||
\end{bmatrix} | |||
</math> | |||
and | |||
:<math> \begin{bmatrix} | |||
0\\ 1 | |||
\end{bmatrix}. | |||
</math> | |||
====Rescale the variables and integrate==== | |||
With the diagonalization the integral can be written | |||
:<math> | |||
\int \exp\left( - \frac 1 2 x^T A x \right) d^2x | |||
= \int \exp\left( - \frac 1 2 \sum_{j=1}^2 \lambda_{j} y_j^2 \right) \, d^2y | |||
</math> | |||
where | |||
:<math> y_{ }^{ } = O^T x </math> . | |||
Since the coordinate transformation is simply a rotation of coordinates the [[Jacobian matrix and determinant|Jacobian]] determinant of the transformation is one yielding | |||
:<math> dy_{ }^2 = dx^2 </math> . | |||
The integrations can now be performed. | |||
:<math> | |||
\int \exp\left( - \frac 1 2 x^T A x \right) d^2x | |||
= \int \exp\left( - \frac 1 2 \sum_{j=1}^2 \lambda_{j} y_j^2 \right) d^2y | |||
= \prod_{j=1}^2 \left( { 2\pi \over \lambda_j } \right)^{1\over 2} | |||
= \left( { ( 2\pi )^2 \over \prod_{j=1}^2 \lambda_j } \right)^{1\over 2} | |||
= \left( { ( 2\pi )^2 \over \det{ \left( O^{-1}AO \right)} } \right)^{1\over 2} | |||
= \left( { ( 2\pi )^2 \over \det{ \left( A \right)} } \right)^{1\over 2} | |||
</math> | |||
which is the advertised solution. | |||
===Integrals with complex and linear terms in multiple dimensions=== | |||
With the two-dimensional example it is now easy to see the generalization to the complex plane and to multiple dimensions. | |||
====Integrals with a linear term in the argument==== | |||
:<math> | |||
\int \exp\left( - \frac 1 2 x \cdot A \cdot x +J \cdot x \right) d^nx | |||
= | |||
\sqrt{\frac{(2\pi)^n}{\det A}} \exp \left( {1\over 2} J \cdot A^{-1} \cdot J \right) | |||
</math> | |||
====Integrals with an imaginary linear term==== | |||
:<math> | |||
\int \exp\left( - \frac 1 2 x \cdot A \cdot x +iJ \cdot x \right) d^nx | |||
= | |||
\sqrt{\frac{(2\pi)^n}{\det A}} \exp \left( -{1\over 2} J \cdot A^{-1} \cdot J \right) | |||
</math> | |||
====Integrals with a complex quadratic term==== | |||
:<math> | |||
\int \exp\left( \frac i 2 x \cdot A \cdot x +iJ \cdot x \right) d^nx | |||
= | |||
\sqrt{\frac{(2\pi i)^n}{\det A}} \exp \left( -{i\over 2} J \cdot A^{-1} \cdot J \right) | |||
</math> | |||
===Integrals with differential operators in the argument=== | |||
As an example consider the integral<ref> Zee, pp. 21-22. </ref> | |||
:<math> | |||
\int \exp\left[ \int d^4x \left ( -\frac 1 2 \varphi \hat A \varphi + J \varphi \right) \right ] D\varphi | |||
</math> | |||
where <math> \hat A </math> is a differential operator with <math> \varphi </math> and <math> J </math> functions of [[spacetime]], and <math> D\varphi </math> indicates integration over all possible paths. In analogy with the matrix version of this integral the solution is | |||
:<math> | |||
\int \exp\left( - \frac 1 2 \varphi \hat A \varphi +J \varphi \right) D\varphi \; \propto \; | |||
\exp \left( {1\over 2} \int d^4x \; d^4y J\left ( x \right ) D\left ( x - y \right ) J\left( y \right ) \right) | |||
</math> | |||
where | |||
:<math> | |||
\hat A D\left ( x - y \right ) = \delta^4 \left ( x - y \right ) | |||
</math> | |||
and <math> D\left ( x - y \right ) </math>, called the [[propagator]], is the inverse of <math> \hat A </math>, and <math> \delta^4 \left ( x - y \right ) </math> is the [[Dirac delta function]]. | |||
Similar arguments yield | |||
:<math> | |||
\int \exp\left[ \int d^4x \left ( -\frac 1 2 \varphi \hat A \varphi + i J \varphi \right) \right ] D\varphi \; \propto \; | |||
\exp \left( - { 1\over 2} \int d^4x \; d^4y J\left ( x \right ) D\left ( x - y \right ) J\left( y \right ) \right) | |||
</math> | |||
and | |||
:<math> | |||
\int \exp\left[ i \int d^4x \left ( \frac 1 2 \varphi \hat A \varphi + J \varphi \right) \right ] D\varphi \; \propto \; | |||
\exp \left( { i\over 2} \int d^4x \; d^4y J\left ( x \right ) D\left ( x - y \right ) J\left( y \right ) \right) | |||
</math>. | |||
See [[Static forces and virtual-particle exchange#Path-integral formulation of virtual-particle exchange |Path-integral formulation of virtual-particle exchange]] for an application of this integral. | |||
==Integrals that can be approximated by the method of steepest descent== | |||
In quantum field theory n-dimensional integrals of the form | |||
:<math> \int_{-\infty}^{\infty} \exp\left( -{1 \over \hbar} f\left( q \right) \right ) d^nq</math> | |||
appear often. Here <math>\hbar</math> is the [[reduced Planck's constant]] and f is a function with a positive minimum at <math> q=q_0</math>. These integrals can be approximated by the [[method of steepest descent]]. | |||
For small values of Planck's constant, f can be expanded about its minimum | |||
:<math> \int_{-\infty}^{\infty} \exp\left[ -{1 \over \hbar} \left( f\left( q_0 \right) + {1\over 2} \left( q-q_0\right)^2f^{\prime \prime} \left( q-q_0\right) + \cdots \right ) \right] d^nq</math>. | |||
Here <math> f^{\prime \prime} </math> is the n by n matrix of second derivatives evaluated at the minimum of the function. | |||
If we neglect higher order terms this integral can be integrated explicitly. | |||
:<math> \int_{-\infty}^{\infty} \exp\left[ -{1 \over \hbar} \left( f\left( q \right) \right ) \right] d^nq \approx | |||
\exp\left[ -{1 \over \hbar} \left( f\left( q_0 \right) \right ) \right] \sqrt{ (2 \pi \hbar )^n \over \det f^{\prime \prime} } </math>. | |||
==Integrals that can be approximated by the method of stationary phase== | |||
A common integral is a path integral of the form | |||
:<math> \int \exp\left( {i \over \hbar} S\left( q, \dot q \right) \right ) Dq </math> | |||
where <math> S\left( q, \dot q \right) </math> is the classical [[Action (physics) | action]] and the integral is over all possible paths that a particle may take. In the limit of small <math> \hbar </math> the integral can be evaluated in the [[stationary phase approximation]]. In this approximation the integral is over the path in which the action is a minimum. Therefore, this approximation recovers the [[classical limit]] of [[classical mechanics | mechanics]]. | |||
==Fourier integrals== | |||
===Dirac delta function=== | |||
The [[Dirac delta function]] in [[spacetime]] can be written as a [[Fourier transform]]<ref> Zee, p. 23. </ref> | |||
:<math> \int { d^4 k \over \left ( 2 \pi \right ) ^4 } \; {\exp \left ( ik \left ( x-y \right) \right ) = \delta^4 \left ( x-y \right ) } </math>. | |||
In general, for any dimension <math> N </math> | |||
:<math> \int { d^N k \over \left ( 2 \pi \right ) ^N } \; {\exp \left ( ik \left ( x-y \right) \right ) = \delta^N \left ( x-y \right ) } </math>. | |||
===Fourier integrals of forms of the Coulomb potential=== | |||
====Laplacian of 1/r==== | |||
While not an integral, the identity in three-dimensional [[Euclidean space]] | |||
:<math> | |||
-{1 \over 4\pi} \nabla^2 \left( {1 \over r} \right) | |||
= \delta \left( \mathbf r \right) | |||
</math> | |||
where | |||
:<math> | |||
r^2 = \mathbf r \cdot \mathbf r | |||
</math> | |||
is a consequence of [[Gauss's theorem]] and can be used to derive integral identities. For an example see [[Longitudinal and transverse vector fields]]. | |||
This identity implies that the [[Fourier integral]] representation of 1/r is | |||
:<math> \int { d^3 k \over \left ( 2 \pi \right ) ^3 } { \exp \left ( i\mathbf k \cdot \mathbf r \right) \over k^2 } = {1 \over 4 \pi r } .</math> | |||
====Yukawa Potential: The Coulomb potential with mass==== | |||
The [[Yukawa potential]] in three dimensions can be represented as an integral over a [[Fourier transform]]<ref> Zee, p. 26, 29. </ref> | |||
:<math> \int { d^3 k \over \left ( 2 \pi \right ) ^3 } { \exp \left ( i\mathbf k \cdot \mathbf r \right) \over k^2 +m^2 } = {e^{ - m r } \over 4 \pi r } </math> | |||
where | |||
:<math> r^2 = \mathbf r \cdot \mathbf r </math> | |||
and | |||
:<math> k^2 = \mathbf k \cdot \mathbf k .</math> | |||
See [[Static forces and virtual-particle exchange#Selected examples | Static forces and virtual-particle exchange ]] for an application of this integral. | |||
In the small m limit the integral reduces to | |||
:<math> {1 \over 4 \pi r } </math>. | |||
To derive this result note: | |||
:<math> \int { d^3 k \over \left ( 2 \pi \right ) ^3 } { \exp \left ( i \mathbf k \cdot \mathbf r \right ) \over k^2 +m^2 } = | |||
\int_0^{\infty} {k^2 dk \over \left ( 2 \pi \right )^2 } \int_{-1}^{1} du {\exp\left( ikru \right) \over k^2 + m^2} | |||
</math> | |||
:<math> | |||
= | |||
{2\over r} \int_0^{\infty} {k dk \over \left ( 2 \pi \right )^2 } {\sin\left( kr \right) \over k^2 + m^2} = | |||
{1\over i r} \int_{-\infty}^{\infty} {k dk \over \left ( 2 \pi \right )^2 } {\exp\left( ikr \right) \over k^2 + m^2} | |||
</math> | |||
:<math> | |||
= | |||
{1\over i r} \int_{-\infty}^{\infty} {k dk \over \left ( 2 \pi \right )^2 } {\exp\left( ikr \right) \over \left(k + i m \right)\left(k - i m \right)} | |||
= | |||
{1\over i r} { 2\pi i \over \left( 2 \pi \right)^2 } {im \over 2 i m} \exp \left( -m r \right) | |||
</math> | |||
====Modified Coulomb potential with mass==== | |||
:<math> \int { d^3 k \over \left ( 2 \pi \right ) ^3 } | |||
\left( \mathbf{\hat{k}}\cdot \mathbf{\hat{r}}\right)^2 | |||
{ \exp \left ( i\mathbf{k} \cdot \mathbf{r} \right ) \over k^2 +m^2 } = {e^{ - m r } \over 4 \pi r } \left\{ 1+ {2\over mr} | |||
- {2 \over \left( mr \right)^2 } \left( e^{mr} -1 \right) \right \} </math> | |||
where the hat indicates a unit vector in three dimensional space. | |||
In the small m limit the integral goes to zero. | |||
To derive this result note: | |||
:<math> \int { d^3 k \over \left ( 2 \pi \right ) ^3 } \left( \mathbf{\hat k}\cdot \mathbf{\hat r}\right)^2 | |||
{ \exp \left ( i\mathbf{k}\cdot \mathbf{r}\right ) \over k^2 +m^2 } = | |||
\int_0^{\infty} {k^2 dk \over \left ( 2 \pi \right )^2 } \int_{-1}^{1} du u^2 {\exp\left( ikru \right) \over k^2 + m^2} | |||
</math> | |||
:<math> | |||
= | |||
{2} \int_0^{\infty} {k^2 dk \over \left ( 2 \pi \right )^2 } {1 \over k^2 + m^2} | |||
\left\{ {1\over kr } \sin\left( kr \right) + 2 {1\over \left(kr\right)^2 } \cos\left( kr \right) | |||
- 2 {1\over \left(kr\right)^3 } \sin\left( kr \right) \right \} | |||
</math> | |||
:<math> | |||
= | |||
{\exp \left( -m r \right) \over 4\pi r} | |||
\left\{ g\left( mr\right) | |||
\right \} | |||
</math> | |||
where | |||
:<math> | |||
g\left( mr\right) | |||
= 1+{2\over mr}-{2 \over \left( mr \right)^2 } \left( e^{mr} -1 \right) | |||
.</math> | |||
Note that in the limit that | |||
:<math> | |||
m\rightarrow 0 | |||
</math> | |||
that | |||
:<math> | |||
g\left( mr\right) \rightarrow 1 | |||
</math>. | |||
====Longitudinal potential with mass==== | |||
:<math>\int { d^3 k \over \left ( 2 \pi \right ) ^3 } | |||
\; \mathbf{\hat{k}} \mathbf{\hat{k}} \; | |||
{ \exp \left ( i\mathbf{k} \cdot \mathbf{r} \right ) \over k^2 +m^2 } | |||
= | |||
{1\over 2} {e^{ - m r } \over 4 \pi r } \left[ \mathbf{1}- \mathbf{\hat{r}} \mathbf{\hat{r}} \right] | |||
+ | |||
{1\over 2} {e^{ - m r } \over 4 \pi r } \left\{ 1+ {2\over mr} | |||
- {2 \over \left( mr \right)^2 } \left( e^{mr} -1 \right) \right \} | |||
\left[\mathbf{1}+ \mathbf{\hat{r}} \mathbf{\hat{r}}\right] </math> | |||
where the hat indicates a unit vector in three dimensional space. | |||
In the small m limit the integral reduces to | |||
:<math> {1\over 2} {1 \over 4 \pi r } \left[ \mathbf 1 - \mathbf{\hat r} \mathbf{\hat r} \right] . | |||
</math> | |||
To derive this result note: | |||
:<math> \int { d^3 k \over \left ( 2 \pi \right ) ^3 } \mathbf{\hat k} \mathbf{\hat k} | |||
{ \exp \left ( i\mathbf k \cdot \mathbf r \right ) \over k^2 +m^2 } | |||
= | |||
\int { d^3 k \over \left ( 2 \pi \right ) ^3 } | |||
\left[ | |||
\left( \mathbf{\hat k}\cdot \mathbf{\hat r}\right)^2\mathbf{\hat r} \mathbf{\hat r} | |||
+ \left( \mathbf{\hat k}\cdot \mathbf{\hat \theta}\right)^2\mathbf{\hat \theta} \mathbf{\hat \theta} | |||
+ \left( \mathbf{\hat k}\cdot \mathbf{\hat \phi}\right)^2\mathbf{\hat \phi} \mathbf{\hat \phi} | |||
\right] | |||
{ \exp \left ( i\mathbf k \cdot \mathbf r \right ) \over k^2 +m^2 } | |||
</math> | |||
where the cross terms vanish. The integral can be written | |||
:<math> | |||
= | |||
{1 \over 4 \pi r } \exp \left ( - m r \right ) \left\{ 1+ {2\over mr } | |||
- {2\over \left(mr\right)^2 } \left( e^{mr} -1 \right) \right \} | |||
\left\{\mathbf 1 - {1\over 2} \left[\mathbf 1 - \mathbf{\hat r} \mathbf{\hat r}\right] \right\} | |||
+ | |||
\int_0^{\infty} {k^2 dk \over \left ( 2 \pi \right )^2 } \int_{-1}^{1} du {\exp\left( ikru \right) \over k^2 + m^2} | |||
{1\over 2} \left[ \mathbf 1 - \mathbf{\hat r} \mathbf{\hat r} \right] | |||
</math> | |||
:<math> | |||
= | |||
{1\over 2} {e^{ - m r } \over 4 \pi r } \left[ \mathbf 1 - \mathbf{\hat r} \mathbf{\hat r} \right] | |||
+ | |||
{e^{ - m r } \over 4 \pi r } \left\{ 1+ {2\over mr } | |||
- {2\over \left(mr\right)^2 } \left( e^{mr} -1 \right) \right \} | |||
\left\{ {1\over 2} \left[\mathbf 1 + \mathbf{\hat r} \mathbf{\hat r}\right] \right\} | |||
</math>. | |||
====Transverse potential with mass==== | |||
:<math>\int { d^3 k \over \left ( 2 \pi \right ) ^3 } | |||
\; \left[ \mathbf{1} - \mathbf{\hat{k}} \mathbf{\hat{k}} \right] \; | |||
{ \exp \left ( i \mathbf{k} \cdot \mathbf{r}\right ) \over k^2 +m^2 } | |||
= {1\over 2} {e^{ - m r } \over 4 \pi r } \left\{ | |||
{2 \over \left( mr \right)^2 } \left( e^{mr} -1 \right) - {2\over mr} \right \} | |||
\left[\mathbf{1} + \mathbf{\hat{r}} \mathbf{\hat{r}}\right]</math> | |||
In the small mr limit the integral goes to | |||
:<math> | |||
{1\over 2} {1 \over 4 \pi r } | |||
\left[\mathbf 1 + \mathbf{\hat r} \mathbf{\hat r}\right] | |||
. </math> | |||
For large distance, the integral falls off as the inverse cube of r | |||
:<math> | |||
{1\over 4 \pi m^2r^3 } | |||
\left[\mathbf 1 + \mathbf{\hat r} \mathbf{\hat r}\right] | |||
.</math> | |||
For applications of this integral see [[Darwin Lagrangian]] and [[Static forces and virtual-particle exchange#Darwin interaction in a vacuum | Darwin interaction in a vacuum]]. | |||
====Angular integration in cylindrical coordinates==== | |||
There are two important integrals. The angular integration of an exponential in cylindrical coordinates can be written in terms of Bessel functions of the first kind<ref> {{cite book | author=I. S. Gradshteyn and I. M. Ryzhik | title=Tables of Integrals, Seies, and Products| publisher= Academic Press| year=1965 | id=ISBN 65-29097}} p. 402 </ref><ref> {{cite book |author=Jackson, John D.|title=Classical Electrodynamics (3rd ed.)|publisher=Wiley|year=1998|id=ISBN 047130932X}} p. 113 </ref> | |||
:<math> | |||
\int_0^{2 \pi} {d\varphi \over 2 \pi} \exp\left( i p \cos\left( \varphi \right) \right) | |||
= | |||
J_0 \left( p \right) | |||
</math> | |||
and | |||
:<math> | |||
\int_0^{2 \pi} {d\varphi \over 2 \pi} \cos\left( \varphi \right) \exp\left( i p \cos\left( \varphi \right) \right) | |||
= | |||
i J_1 \left( p \right) | |||
. </math> | |||
For applications of these integrals see [[Static forces and virtual-particle exchange#Magnetic interaction between current loops in a simple plasma or electron gas | Magnetic interaction between current loops in a simple plasma or electron gas]]. | |||
==Bessel functions== | |||
===Integration of the cylindrical propagator with mass=== | |||
====First power of a Bessel function==== | |||
:<math> | |||
\int_0^{\infty} {k\; dk \over k^2 +m^2} J_0 \left( kr \right) | |||
= | |||
K_0 \left( mr \right) | |||
. </math> | |||
See Abramowitz and Stegun.<ref> {{cite book | author=M. Abramowitz and I. Stegun | title=Handbook of Mathematical Functions| publisher= Dover| year=1965 | id=ISBN 486-61272-4}} Section 11.4.44 </ref> | |||
For <math> mr << 1 </math>, we have<ref> Jackson, p. 116 </ref> | |||
:<math> | |||
K_0 \left( mr \right) \rightarrow -\ln \left( {mr \over 2}\right) + 0.5772 | |||
.</math> | |||
For an application of this integral see [[Static forces and virtual-particle exchange#Two line charges embedded in a plasma or electron gas | Two line charges embedded in a plasma or electron gas]]. | |||
====Squares of Bessel functions==== | |||
The integration of the propagator in cylindrical coordinates is<ref> I. S. Gradshteyn and I. M. Ryzhik, p. 679 </ref> | |||
:<math> | |||
\int_0^{\infty} {k\; dk \over k^2 +m^2} J_1^2 \left( kr \right) | |||
= | |||
I_1 \left( mr \right)K_1 \left( mr \right) | |||
. </math> | |||
For small mr the integral becomes | |||
:<math> | |||
\int_o^{\infty} {k\; dk \over k^2 +m^2} J_1^2 \left( kr \right) | |||
\rightarrow | |||
{1\over 2 }\left[ 1 - {1\over 8} \left(mr\right)^2 \right] | |||
. </math> | |||
For large mr the integral becomes | |||
:<math> | |||
\int_o^{\infty} {k\; dk \over k^2 +m^2} J_1^2 \left( kr \right) | |||
\rightarrow | |||
{1\over 2}\;\left( {1\over mr}\right) | |||
. </math> | |||
For applications of this integral see [[Static forces and virtual-particle exchange#Magnetic interaction between current loops in a simple plasma or electron gas | Magnetic interaction between current loops in a simple plasma or electron gas]]. | |||
In general | |||
:<math> | |||
\int_0^{\infty} {k\; dk \over k^2 +m^2} J_{\nu}^2 \left( kr \right) | |||
= | |||
I_{\nu} \left( mr \right)K_{\nu} \left( mr \right) | |||
\;\;\; \Re \;{\nu} > -1. | |||
</math> | |||
===Integration over a magnetic wave function=== | |||
The two-dimensional integral over a magnetic wave function is<ref> Abramowitz and Stegun, Section 11.4.28 </ref> | |||
:<math> | |||
{2 a^{2n+2}\over n!} | |||
\int_0^{\infty} { dr }\;r^{2n+1}\exp\left( -a^2 r^2\right) J_{0} \left( kr \right) | |||
= | |||
M\left( n+1, 1, -{k^2 \over 4a^2}\right) | |||
. </math> | |||
Here, M is a [[confluent hypergeometric function]]. For an application of this integral see [[Static forces and virtual-particle exchange#Charge density spread over a wave function |Charge density spread over a wave function]]. | |||
==See also== | |||
*[[Relation between Schrödinger's equation and the path integral formulation of quantum mechanics]] | |||
==References== | |||
{{Reflist}}<!--added under references heading by script-assisted edit--> | |||
{{Physics-footer}} | |||
[[Category:Quantum field theory| ]] | |||
[[Category:Mathematical physics]] |
Latest revision as of 19:17, 9 April 2013
There are common integrals in quantum field theory that appear repeatedly.[1] These integrals are all variations and generalizations of gaussian integrals to the complex plane and to multiple dimensions. Other integrals can be approximated by versions of the gaussian integral. Fourier integrals are also considered.
Variations on a simple gaussian integral
Gaussian integral
The first integral, with broad application outside of quantum field theory, is the gaussian integral.
In physics the factor of 1/2 in the argument of the exponential is common.
Note:
Thus we obtain
Slight generalization of the gaussian integral
where we have scaled
Integrals of exponents and even powers of x
and
In general
Note that the integrals of exponents and odd powers of x are 0, due to odd symmetry.
Integrals with a linear term in the argument of the exponent
This integral can be performed by completing the square.
Integrals with an imaginary linear term in the argument of the exponent
The integral
is proportional to the Fourier transform of the gaussian where is the conjugate variable of .
By again completing the square we see that the Fourier transform of a gaussian is also a gaussian, but in the conjugate variable. The larger is, the narrower the gaussian in and the wider the gaussian in . This is a demonstration of the uncertainty principle.
Integrals with a complex argument of the exponent
The integral of interest is (for an example of an application see Relation between Schrödinger's equation and the path integral formulation of quantum mechanics)
We now assume that and may be complex.
Completing the square
By analogy with the previous integrals
This result is valid as an integration in the complex plane as long as has a positive imaginary part.
Gaussian integrals in higher dimensions
The one-dimensional integrals can be generalized to multiple dimensions.[2]
Here is a real symmetric matrix.
This integral is performed by diagonalization of with an orthogonal transformation
where is a diagonal matrix and is an orthogonal matrix. This decouples the variables and allows the integration to be performed as one-dimensional integrations.
This is best illustrated with a two-dimensional example.
Example: Simple gaussian integration in two dimensions
The gaussian integral in two dimensions is
where is a two-dimensional symmetric matrix with components specified as
and we have used the Einstein summation convention.
Diagonalize the matrix
The first step is to diagonalize the matrix.[3] Note that
where, since A is a real symmetric matrix, we can choose to be an orthogonal matrix, and hence also a unitary matrix.
is diagonal.
can be obtained from the eigenvectors of .
Eigenvalues of A
To find the eigenvectors of one first finds the eigenvalues of given by
The eigenvalues are solutions of the characteristic polynomial
which are
Eigenvectors of A
Substitution of the eigenvalues back into the eigenvector equation yields
or
From the characteristic equation we know
Also note
The eigenvectors can be written
and
for the two eigenvectors. Here is a normalizing factor given by
It is easily verified that the two eigenvectors are orthogonal to each other.
Construction of the orthogonal matrix
The orthogonal matrix is constructed by assigning the normalized eigenvectors as columns in the orthogonal matrix
Note that the determinant of O is equal to one.
If we define
then the orthogonal matrix can be written
which is simply a rotation of the eigenvectors.
The inverse is
Diagonal matrix
The diagonal matrix becomes
with eigenvectors
and
Numerical example
The eigenvalues are
The eigenvectors are
and
where
The orthogonal vector is
It is easily verified that the determinant of O is 1.
The inverse of O is
The diagonal matrix becomes
with the eigenvectors
and
Rescale the variables and integrate
With the diagonalization the integral can be written
where
Since the coordinate transformation is simply a rotation of coordinates the Jacobian determinant of the transformation is one yielding
The integrations can now be performed.
which is the advertised solution.
Integrals with complex and linear terms in multiple dimensions
With the two-dimensional example it is now easy to see the generalization to the complex plane and to multiple dimensions.
Integrals with a linear term in the argument
Integrals with an imaginary linear term
Integrals with a complex quadratic term
Integrals with differential operators in the argument
As an example consider the integral[4]
where is a differential operator with and functions of spacetime, and indicates integration over all possible paths. In analogy with the matrix version of this integral the solution is
where
and , called the propagator, is the inverse of , and is the Dirac delta function.
Similar arguments yield
and
See Path-integral formulation of virtual-particle exchange for an application of this integral.
Integrals that can be approximated by the method of steepest descent
In quantum field theory n-dimensional integrals of the form
appear often. Here is the reduced Planck's constant and f is a function with a positive minimum at . These integrals can be approximated by the method of steepest descent.
For small values of Planck's constant, f can be expanded about its minimum
Here is the n by n matrix of second derivatives evaluated at the minimum of the function.
If we neglect higher order terms this integral can be integrated explicitly.
Integrals that can be approximated by the method of stationary phase
A common integral is a path integral of the form
where is the classical action and the integral is over all possible paths that a particle may take. In the limit of small the integral can be evaluated in the stationary phase approximation. In this approximation the integral is over the path in which the action is a minimum. Therefore, this approximation recovers the classical limit of mechanics.
Fourier integrals
Dirac delta function
The Dirac delta function in spacetime can be written as a Fourier transform[5]
Fourier integrals of forms of the Coulomb potential
Laplacian of 1/r
While not an integral, the identity in three-dimensional Euclidean space
where
is a consequence of Gauss's theorem and can be used to derive integral identities. For an example see Longitudinal and transverse vector fields.
This identity implies that the Fourier integral representation of 1/r is
Yukawa Potential: The Coulomb potential with mass
The Yukawa potential in three dimensions can be represented as an integral over a Fourier transform[6]
where
and
See Static forces and virtual-particle exchange for an application of this integral.
In the small m limit the integral reduces to
To derive this result note:
Modified Coulomb potential with mass
where the hat indicates a unit vector in three dimensional space.
In the small m limit the integral goes to zero.
To derive this result note:
where
Note that in the limit that
that
Longitudinal potential with mass
where the hat indicates a unit vector in three dimensional space.
In the small m limit the integral reduces to
To derive this result note:
where the cross terms vanish. The integral can be written
Transverse potential with mass
In the small mr limit the integral goes to
For large distance, the integral falls off as the inverse cube of r
For applications of this integral see Darwin Lagrangian and Darwin interaction in a vacuum.
Angular integration in cylindrical coordinates
There are two important integrals. The angular integration of an exponential in cylindrical coordinates can be written in terms of Bessel functions of the first kind[7][8]
and
For applications of these integrals see Magnetic interaction between current loops in a simple plasma or electron gas.
Bessel functions
Integration of the cylindrical propagator with mass
First power of a Bessel function
See Abramowitz and Stegun.[9]
For , we have[10]
For an application of this integral see Two line charges embedded in a plasma or electron gas.
Squares of Bessel functions
The integration of the propagator in cylindrical coordinates is[11]
For small mr the integral becomes
For large mr the integral becomes
For applications of this integral see Magnetic interaction between current loops in a simple plasma or electron gas.
In general
Integration over a magnetic wave function
The two-dimensional integral over a magnetic wave function is[12]
Here, M is a confluent hypergeometric function. For an application of this integral see Charge density spread over a wave function.
See also
References
43 year old Petroleum Engineer Harry from Deep River, usually spends time with hobbies and interests like renting movies, property developers in singapore new condominium and vehicle racing. Constantly enjoys going to destinations like Camino Real de Tierra Adentro.
- ↑ 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.
My blog: http://www.primaboinca.com/view_profile.php?userid=5889534 pp. 13-15 - ↑ 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.
My blog: http://www.primaboinca.com/view_profile.php?userid=5889534 - ↑ 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.
My blog: http://www.primaboinca.com/view_profile.php?userid=5889534 - ↑ Zee, pp. 21-22.
- ↑ Zee, p. 23.
- ↑ Zee, p. 26, 29.
- ↑ 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.
My blog: http://www.primaboinca.com/view_profile.php?userid=5889534 p. 402 - ↑ 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.
My blog: http://www.primaboinca.com/view_profile.php?userid=5889534 p. 113 - ↑ 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.
My blog: http://www.primaboinca.com/view_profile.php?userid=5889534 Section 11.4.44 - ↑ Jackson, p. 116
- ↑ I. S. Gradshteyn and I. M. Ryzhik, p. 679
- ↑ Abramowitz and Stegun, Section 11.4.28