Coble creep: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
en>Addbot m Bot: Migrating 1 interwiki links, now provided by Wikidata on d:q2388902 |
||
Line 1: | Line 1: | ||
In [[mathematics]], an [[operator (mathematics)|operator]] or [[transformation (mathematics)|transform]] is a [[function (mathematics)|function]] from one [[function space|space of functions]] to another. Operators occur commonly in [[engineering]], [[physics]] and mathematics. Many are [[integral operator]]s and [[differential operator]]s. | |||
In the following ''L'' is an operator | |||
:<math>L:\mathcal{F}\to\mathcal{G}</math> | |||
which takes a function <math>y\in\mathcal{F}</math> to another function <math>L[y]\in\mathcal{G}</math>. Here, <math>\mathcal{F}</math> and <math>\mathcal{G}</math> are some unspecified [[function space]]s, such as [[Hardy space]], [[Lp space|''L''<sup>p</sup> space]], [[Sobolev space]], or, more vaguely, the space of [[holomorphic function]]s. | |||
{| class="wikitable" | |||
|- style="background:#eaeaea" | |||
! style="text-align: center" | Expression | |||
! style="text-align: center" | Curve<br>definition | |||
! style="text-align: center" | Variables | |||
! style="text-align: center" | Description | |||
|- | |||
! style="background:#eafaea" colspan=4|Linear transformations | |||
|- | |||
| <math>L[y]=y^{(n)} \ </math>|| || ||Derivative of ''n''th order | |||
|- | |||
| <math>L[y]=\int_a^t y \,dt</math> ||Cartesian||<math>y=y(x)</math><br><math>x=t</math>|| Integral, area | |||
|- | |||
| <math>L[y]=y\circ f</math>|| || ||[[Composition operator]] | |||
|- | |||
| <math>L[y]=\frac{y\circ t+y\circ -t}{2}</math>|| || ||Even component | |||
|- | |||
| <math>L[y]=\frac{y\circ t-y\circ -t}{2}</math>|| || ||Odd component | |||
|- | |||
| <math>L[y]=y\circ (t+1) - y\circ t = \Delta y</math>|| || ||[[Difference operator]] | |||
|- | |||
| <math>L[y]=y\circ (t) - y\circ (t-1) = \nabla y</math>|| || ||Backward difference (Nabla operator) | |||
|- | |||
| <math>L[y]=\sum y=\Delta^{-1}y</math>|| || ||[[Indefinite sum]] operator (inverse operator of difference) | |||
|- | |||
| <math>L[y] =-(py')'+qy \,</math>|| || ||[[Sturm–Liouville operator]] | |||
|- | |||
! style="background:#eafaea" colspan=4|Non-linear transformations | |||
|- | |||
| <math>F[y]=y^{[-1]} \ </math> || || ||[[Inverse function]] | |||
|- | |||
| <math>F[y]=t\,y'^{[-1]} - y\circ y'^{[-1]} </math>|| || ||[[Legendre transformation]] | |||
|- | |||
| <math>F[y]=f\circ y</math>|| || ||Left composition | |||
|- | |||
| <math>F[y]=\prod y</math>|| || ||[[Indefinite product]] | |||
|- | |||
| <math>F[y]=\frac{y'}{y}</math>|| || ||[[Logarithmic derivative]] | |||
|- | |||
| <math>F[y]={\frac{ty'}{y}}</math>|| || ||[[Elasticity of a function|Elasticity]] | |||
|- | |||
| <math>F[y]={y''' \over y'}-{3\over 2}\left({y''\over y'}\right)^2</math>|| || || [[Schwarzian derivative]] | |||
|- | |||
| <math>F[y]=\int_a^t |y'| \,dt </math>|| || ||[[Total variation]] | |||
|- | |||
| <math>F[y]=\frac{1}{t-a}\int_a^t y\,dt </math>|| || ||[[Mean value|Arithmetic mean]] | |||
|- | |||
| <math>F[y]=\exp \left( \frac{1}{t-a}\int_a^t \ln y\,dt \right) </math> || || ||[[Mean value|Geometric mean]] | |||
|- | |||
| <math>F[y]= -\frac{y}{y'}</math>|| Cartesian||<math>y=y(x)</math><br><math>x=t</math>||rowspan=3|[[Subtangent]] | |||
|- | |||
| <math>F[x,y]= -\frac{yx'}{y'}</math>|| Parametric<br>Cartesian||<math>x=x(t)</math><br><math>y=y(t)</math> | |||
|- | |||
| <math>F[r]= -\frac{r^2}{r'}</math>||Polar||<math>r=r(\phi)</math><br><math>\phi=t</math> | |||
|- | |||
| <math>F[r]=\frac{1}{2}\int_a^t r^2 dt</math>||Polar||<math>r=r(\phi)</math><br><math>\phi=t</math> ||Sector area | |||
|- | |||
| <math>F[y]= \int_a^t \sqrt { 1 + y'^2 }\, dt</math>|| Cartesian||<math>y=y(x)</math><br><math>x=t</math>||rowspan=3|[[Arc length]] | |||
|- | |||
| <math>F[x,y]= \int_a^t \sqrt { x'^2 + y'^2 }\, dt</math>|| Parametric<br>Cartesian||<math>x=x(t)</math><br><math>y=y(t)</math> | |||
|- | |||
| <math>F[r]= \int_a^t \sqrt { r^2 + r'^2 }\, dt</math>||Polar||<math>r=r(\phi)</math><br><math>\phi=t</math> | |||
|- | |||
| <math>F[x,y] = \int_a^t\sqrt[3]{y''}\, dt </math> || Cartesian||<math>y=y(x)</math><br><math>x=t</math>||rowspan=3|[[Affine curvature|Affine arc length]] | |||
|- | |||
| <math>F[x,y] = \int_a^t\sqrt[3]{x'y''-x''y'}\, dt </math> || Parametric<br>Cartesian||<math>x=x(t)</math><br><math>y=y(t)</math> | |||
|- | |||
| <math>F[x,y,z]=\int_a^t\sqrt[3]{z'''(x'y''-y'x'')+z''(x'''y'-x'y''')+z'(x''y'''-x'''y'')}</math>||Parametric<br>Cartesian||<math>x=x(t)</math><br><math>y=y(t)</math><br><math>z=z(t)</math> | |||
|- | |||
| <math>F[y]=\frac{y''}{(1+y'^2)^{3/2}}</math>||Cartesian||<math>y=y(x)</math><br><math>x=t</math>|| rowspan=4|[[Curvature]] | |||
|- | |||
| <math>F[x,y]= \frac{x'y''-y'x''}{(x'^2+y'^2)^{3/2}}</math>||Parametric<br>Cartesian||<math>x=x(t)</math><br><math>y=y(t)</math> | |||
|- | |||
| <math>F[r]=\frac{r^2+2r'^2-rr''}{(r^2+r'^2)^{3/2}}</math>||Polar||<math>r=r(\phi)</math><br><math>\phi=t</math> | |||
|- | |||
| <math>F[x,y,z]=\frac{\sqrt{(z''y'-z'y'')^2+(x''z'-z''x')^2+(y''x'-x''y')^2}}{(x'^2+y'^2+z'^2)^{3/2}}</math>||Parametric<br>Cartesian||<math>x=x(t)</math><br><math>y=y(t)</math><br><math>z=z(t)</math> | |||
|- | |||
| <math>F[y]=\frac{1}{3}\frac{y''''}{(y'')^{5/3}}-\frac{5}{9}\frac{y'''^2}{(y'')^{8/3}}</math>||Cartesian||<math>y=y(x)</math><br><math>x=t</math>||rowspan=2|[[Affine curvature]] | |||
|- | |||
| <math>F[x,y]= \frac{x''y'''-x'''y''}{(x'y''-x''y')^{5/3}}-\frac{1}{2}\left[\frac{1}{(x'y''-x''y')^{2/3}}\right]''</math>||Parametric<br>Cartesian||<math>x=x(t)</math><br><math>y=y(t)</math> | |||
|- | |||
| <math>F[x,y,z]=\frac{z'''(x'y''-y'x'')+z''(x'''y'-x'y''')+z'(x''y'''-x'''y'')}{(x'^2+y'^2+z'^2)(x''^2+y''^2+z''^2)}</math>||Parametric<br>Cartesian||<math>x=x(t)</math><br><math>y=y(t)</math><br><math>z=z(t)</math>||[[Torsion of curves]] | |||
|- | |||
| <math>X[x,y]=\frac{y'}{yx'-xy'}</math><br><br><math>Y[x,y]=\frac{x'}{xy'-yx'}</math>||Parametric<br>Cartesian||<math>x=x(t)</math><br><math>y=y(t)</math>||[[Dual curve]]<br>(tangent coordinates) | |||
|- | |||
| <math>X[x,y]=x+\frac{ay'}{\sqrt {x'^2+y'^2}}</math><br><br><math>Y[x,y]=y-\frac{ax'}{\sqrt {x'^2+y'^2}}</math>||Parametric<br>Cartesian||<math>x=x(t)</math><br><math>y=y(t)</math>||[[Parallel curve]] | |||
|- | |||
| <math>X[x,y]=x+y'\frac{x'^2+y'^2}{x''y'-y''x'}</math><br><br><math>Y[x,y]=y+x'\frac{x'^2+y'^2}{y''x'-x''y'}</math>||Parametric<br>Cartesian||<math>x=x(t)</math><br><math>y=y(t)</math>||rowspan=2|[[Evolute]] | |||
|- | |||
| <math>F[r]=t (r'\circ r^{[-1]})</math>||Intrinsic||<math>r=r(s)</math><br><math>s=t</math> | |||
|- | |||
|<math>X[x,y]=x-\frac{x'\int_a^t \sqrt { x'^2 + y'^2 }\, dt}{\sqrt { x'^2 + y'^2 }}</math><br><br><math>Y[x,y]=y-\frac{y'\int_a^t \sqrt { x'^2 + y'^2 }\, dt}{\sqrt { x'^2 + y'^2 }}</math>|| Parametric<br>Cartesian||<math>x=x(t)</math><br><math>y=y(t)</math>|||[[Involute]] | |||
|- | |||
|<math>X[x,y]=\frac{(xy'-yx')y'}{x'^2 + y'^2}</math><br><br><math>Y[x,y]=\frac{(yx'-xy')x'}{x'^2 + y'^2}</math>|| Parametric<br>Cartesian||<math>x=x(t)</math><br><math>y=y(t)</math>|||[[Pedal curve]] with pedal point (0;0) | |||
|- | |||
|<math>X[x,y]=\frac{(x'^2-y'^2)y'+2xyx'}{xy'-yx'}</math><br><br><math>Y[x,y]=\frac{(x'^2-y'^2)x'+2xyy'}{xy'-yx'}</math>|| Parametric<br>Cartesian||<math>x=x(t)</math><br><math>y=y(t)</math>|||[[Negative pedal curve]] with pedal point (0;0) | |||
|- | |||
| <math>X[y] = \int_a^t \cos \left[\int_a^t \frac{1}{y} \,dt\right] dt</math><br><br><math>Y[y] = \int_a^t \sin \left[\int_a^t \frac{1}{y} \,dt\right] dt</math>||Intrinsic||<math>y=r(s)</math><br><math>s=t</math>||Intrinsic to<br>Cartesian<br>transformation | |||
|- | |||
! style="background:#eafaea" colspan=4|Metric functionals | |||
|- | |||
| <math>F[y]=||y||=\sqrt{\int_E y^2 \, dt}</math>|| || ||[[norm (mathematics)|Norm]] | |||
|- | |||
| <math>F[x,y]=\int_E xy \, dt</math>|| || ||[[Inner product]] | |||
|- | |||
| <math>F[x,y]=\arccos \left[\frac{\int_E xy \, dt}{\sqrt{\int_E x^2 \, dt}\sqrt{\int_E y^2 \, dt}}\right]</math>|| || ||[[Fubini-Study metric]]<br>(inner angle) | |||
|- | |||
! style="background:#eafaea" colspan=4|Distribution functionals | |||
|- | |||
| <math>F[x,y] = x * y = \int_E x(s) y(t - s)\, ds</math>|| || ||[[Convolution]] | |||
|- | |||
| <math>F[y] = \int_E y \ln y \, dy</math>|| || ||[[Differential entropy]] | |||
|- | |||
| <math>F[y] = \int_E yt\,dt</math>|| || ||[[Expected value]] | |||
|- | |||
| <math>F[y] = \int_E (t-\int_E yt\,dt)^2y\,dt</math>|| || ||[[Variance]] | |||
|} | |||
==See also== | |||
* [[List of transforms]] | |||
* [[List of Fourier-related transforms]] | |||
* [[Transfer operator]] | |||
* [[Fredholm operator]] | |||
* [[Borel summation|Borel transform]] | |||
* [[Table of mathematical symbols]] | |||
[[Category:Mathematics-related lists|Operators]] | |||
[[Category:Functional analysis]] | |||
[[Category:Curves]] |
Latest revision as of 12:27, 16 March 2013
In mathematics, an operator or transform is a function from one space of functions to another. Operators occur commonly in engineering, physics and mathematics. Many are integral operators and differential operators.
In the following L is an operator
which takes a function to another function . Here, and are some unspecified function spaces, such as Hardy space, Lp space, Sobolev space, or, more vaguely, the space of holomorphic functions.
Expression | Curve definition |
Variables | Description |
---|---|---|---|
Linear transformations | |||
Derivative of nth order | |||
Cartesian | Integral, area | ||
Composition operator | |||
Even component | |||
Odd component | |||
Difference operator | |||
Backward difference (Nabla operator) | |||
Indefinite sum operator (inverse operator of difference) | |||
Sturm–Liouville operator | |||
Non-linear transformations | |||
Inverse function | |||
Legendre transformation | |||
Left composition | |||
Indefinite product | |||
Logarithmic derivative | |||
Elasticity | |||
Schwarzian derivative | |||
Total variation | |||
Arithmetic mean | |||
Geometric mean | |||
Cartesian | Subtangent | ||
Parametric Cartesian |
|||
Polar | |||
Polar | Sector area | ||
Cartesian | Arc length | ||
Parametric Cartesian |
|||
Polar | |||
Cartesian | Affine arc length | ||
Parametric Cartesian |
|||
Parametric Cartesian |
|||
Cartesian | Curvature | ||
Parametric Cartesian |
|||
Polar | |||
Parametric Cartesian |
|||
Cartesian | Affine curvature | ||
Parametric Cartesian |
|||
Parametric Cartesian |
Torsion of curves | ||
Parametric Cartesian |
Dual curve (tangent coordinates) | ||
Parametric Cartesian |
Parallel curve | ||
Parametric Cartesian |
Evolute | ||
Intrinsic | |||
Parametric Cartesian |
Involute | ||
Parametric Cartesian |
Pedal curve with pedal point (0;0) | ||
Parametric Cartesian |
Negative pedal curve with pedal point (0;0) | ||
Intrinsic | Intrinsic to Cartesian transformation | ||
Metric functionals | |||
Norm | |||
Inner product | |||
Fubini-Study metric (inner angle) | |||
Distribution functionals | |||
Convolution | |||
Differential entropy | |||
Expected value | |||
Variance |