Coble creep: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
No edit summary
 
en>Addbot
m Bot: Migrating 1 interwiki links, now provided by Wikidata on d:q2388902
 
Line 1: Line 1:
Alyson Meagher is the title her parents gave her but she doesn't like when people use her full name. What me and my family members love is doing [http://165.132.39.93/xe/visitors/372912 love psychics] ballet but I've been using on new things lately. [http://formalarmour.com/index.php?do=/profile-26947/info/ telephone psychic] Office supervising is exactly where her primary earnings comes from but she's already applied for an additional 1. I've always loved living in Kentucky but now I'm contemplating other choices.<br><br>My web page ... [http://checkmates.co.za/index.php?do=/profile-56347/info/ accurate psychic readings]
In [[mathematics]], an [[operator (mathematics)|operator]] or [[transformation (mathematics)|transform]] is a [[function (mathematics)|function]] from one [[function space|space of functions]] to another. Operators occur commonly in [[engineering]], [[physics]] and mathematics. Many are [[integral operator]]s and [[differential operator]]s.
 
In the following ''L'' is an operator
 
:<math>L:\mathcal{F}\to\mathcal{G}</math>
 
which takes a function <math>y\in\mathcal{F}</math> to another function <math>L[y]\in\mathcal{G}</math>. Here, <math>\mathcal{F}</math> and <math>\mathcal{G}</math> are some unspecified [[function space]]s, such as [[Hardy space]], [[Lp space|''L''<sup>p</sup> space]], [[Sobolev space]], or, more vaguely, the space of [[holomorphic function]]s.
 
{| class="wikitable"
|- style="background:#eaeaea"
! style="text-align: center" | Expression
! style="text-align: center" | Curve<br>definition
! style="text-align: center" | Variables
! style="text-align: center" | Description
|-
! style="background:#eafaea" colspan=4|Linear transformations
|-
| <math>L[y]=y^{(n)} \ </math>|| || ||Derivative of ''n''th order
|-
| <math>L[y]=\int_a^t y \,dt</math> ||Cartesian||<math>y=y(x)</math><br><math>x=t</math>|| Integral, area
|-
| <math>L[y]=y\circ f</math>|| || ||[[Composition operator]]
|-
| <math>L[y]=\frac{y\circ t+y\circ -t}{2}</math>|| || ||Even component
|-
| <math>L[y]=\frac{y\circ t-y\circ -t}{2}</math>|| || ||Odd component
|-
| <math>L[y]=y\circ (t+1) - y\circ t = \Delta y</math>|| || ||[[Difference operator]]
|-
| <math>L[y]=y\circ (t) - y\circ (t-1) = \nabla y</math>|| || ||Backward difference (Nabla operator)
|-
| <math>L[y]=\sum y=\Delta^{-1}y</math>|| || ||[[Indefinite sum]] operator (inverse operator of difference)
|-
| <math>L[y] =-(py')'+qy \,</math>|| || ||[[Sturm–Liouville operator]]
|-
! style="background:#eafaea" colspan=4|Non-linear transformations
|-
| <math>F[y]=y^{[-1]} \ </math> || || ||[[Inverse function]]
|-
| <math>F[y]=t\,y'^{[-1]} - y\circ y'^{[-1]} </math>|| || ||[[Legendre transformation]]
|-
| <math>F[y]=f\circ y</math>|| || ||Left composition
|-
| <math>F[y]=\prod y</math>|| || ||[[Indefinite product]]
|-
| <math>F[y]=\frac{y'}{y}</math>|| || ||[[Logarithmic derivative]]
|-
| <math>F[y]={\frac{ty'}{y}}</math>|| || ||[[Elasticity of a function|Elasticity]]
|-
| <math>F[y]={y''' \over y'}-{3\over 2}\left({y''\over y'}\right)^2</math>|| || || [[Schwarzian derivative]]
|-
| <math>F[y]=\int_a^t |y'| \,dt </math>|| || ||[[Total variation]]
|-
| <math>F[y]=\frac{1}{t-a}\int_a^t y\,dt </math>|| || ||[[Mean value|Arithmetic mean]]
|-
| <math>F[y]=\exp \left( \frac{1}{t-a}\int_a^t \ln y\,dt \right) </math> || || ||[[Mean value|Geometric mean]]
|-
| <math>F[y]= -\frac{y}{y'}</math>|| Cartesian||<math>y=y(x)</math><br><math>x=t</math>||rowspan=3|[[Subtangent]]
|-
| <math>F[x,y]= -\frac{yx'}{y'}</math>|| Parametric<br>Cartesian||<math>x=x(t)</math><br><math>y=y(t)</math>
|-
| <math>F[r]= -\frac{r^2}{r'}</math>||Polar||<math>r=r(\phi)</math><br><math>\phi=t</math>
|-
| <math>F[r]=\frac{1}{2}\int_a^t r^2 dt</math>||Polar||<math>r=r(\phi)</math><br><math>\phi=t</math> ||Sector area
|-
| <math>F[y]= \int_a^t \sqrt { 1 + y'^2 }\, dt</math>|| Cartesian||<math>y=y(x)</math><br><math>x=t</math>||rowspan=3|[[Arc length]]
|-
| <math>F[x,y]= \int_a^t \sqrt { x'^2 + y'^2 }\, dt</math>|| Parametric<br>Cartesian||<math>x=x(t)</math><br><math>y=y(t)</math>
|-
| <math>F[r]= \int_a^t \sqrt { r^2 + r'^2 }\, dt</math>||Polar||<math>r=r(\phi)</math><br><math>\phi=t</math>
|-
| <math>F[x,y] = \int_a^t\sqrt[3]{y''}\, dt </math> || Cartesian||<math>y=y(x)</math><br><math>x=t</math>||rowspan=3|[[Affine curvature|Affine arc length]]
|-
| <math>F[x,y] = \int_a^t\sqrt[3]{x'y''-x''y'}\, dt </math> || Parametric<br>Cartesian||<math>x=x(t)</math><br><math>y=y(t)</math>
|-
| <math>F[x,y,z]=\int_a^t\sqrt[3]{z'''(x'y''-y'x'')+z''(x'''y'-x'y''')+z'(x''y'''-x'''y'')}</math>||Parametric<br>Cartesian||<math>x=x(t)</math><br><math>y=y(t)</math><br><math>z=z(t)</math>
|-
| <math>F[y]=\frac{y''}{(1+y'^2)^{3/2}}</math>||Cartesian||<math>y=y(x)</math><br><math>x=t</math>|| rowspan=4|[[Curvature]]
|-
| <math>F[x,y]= \frac{x'y''-y'x''}{(x'^2+y'^2)^{3/2}}</math>||Parametric<br>Cartesian||<math>x=x(t)</math><br><math>y=y(t)</math>
|-
| <math>F[r]=\frac{r^2+2r'^2-rr''}{(r^2+r'^2)^{3/2}}</math>||Polar||<math>r=r(\phi)</math><br><math>\phi=t</math>
|-
| <math>F[x,y,z]=\frac{\sqrt{(z''y'-z'y'')^2+(x''z'-z''x')^2+(y''x'-x''y')^2}}{(x'^2+y'^2+z'^2)^{3/2}}</math>||Parametric<br>Cartesian||<math>x=x(t)</math><br><math>y=y(t)</math><br><math>z=z(t)</math>
|-
| <math>F[y]=\frac{1}{3}\frac{y''''}{(y'')^{5/3}}-\frac{5}{9}\frac{y'''^2}{(y'')^{8/3}}</math>||Cartesian||<math>y=y(x)</math><br><math>x=t</math>||rowspan=2|[[Affine curvature]]
|-
| <math>F[x,y]= \frac{x''y'''-x'''y''}{(x'y''-x''y')^{5/3}}-\frac{1}{2}\left[\frac{1}{(x'y''-x''y')^{2/3}}\right]''</math>||Parametric<br>Cartesian||<math>x=x(t)</math><br><math>y=y(t)</math>
|-
| <math>F[x,y,z]=\frac{z'''(x'y''-y'x'')+z''(x'''y'-x'y''')+z'(x''y'''-x'''y'')}{(x'^2+y'^2+z'^2)(x''^2+y''^2+z''^2)}</math>||Parametric<br>Cartesian||<math>x=x(t)</math><br><math>y=y(t)</math><br><math>z=z(t)</math>||[[Torsion of curves]]
|-
| <math>X[x,y]=\frac{y'}{yx'-xy'}</math><br><br><math>Y[x,y]=\frac{x'}{xy'-yx'}</math>||Parametric<br>Cartesian||<math>x=x(t)</math><br><math>y=y(t)</math>||[[Dual curve]]<br>(tangent coordinates)
|-
| <math>X[x,y]=x+\frac{ay'}{\sqrt {x'^2+y'^2}}</math><br><br><math>Y[x,y]=y-\frac{ax'}{\sqrt {x'^2+y'^2}}</math>||Parametric<br>Cartesian||<math>x=x(t)</math><br><math>y=y(t)</math>||[[Parallel curve]]
|-
| <math>X[x,y]=x+y'\frac{x'^2+y'^2}{x''y'-y''x'}</math><br><br><math>Y[x,y]=y+x'\frac{x'^2+y'^2}{y''x'-x''y'}</math>||Parametric<br>Cartesian||<math>x=x(t)</math><br><math>y=y(t)</math>||rowspan=2|[[Evolute]]
|-
| <math>F[r]=t (r'\circ r^{[-1]})</math>||Intrinsic||<math>r=r(s)</math><br><math>s=t</math>
|-
|<math>X[x,y]=x-\frac{x'\int_a^t \sqrt { x'^2 + y'^2 }\, dt}{\sqrt { x'^2 + y'^2 }}</math><br><br><math>Y[x,y]=y-\frac{y'\int_a^t \sqrt { x'^2 + y'^2 }\, dt}{\sqrt { x'^2 + y'^2 }}</math>|| Parametric<br>Cartesian||<math>x=x(t)</math><br><math>y=y(t)</math>|||[[Involute]]
|-
|<math>X[x,y]=\frac{(xy'-yx')y'}{x'^2 + y'^2}</math><br><br><math>Y[x,y]=\frac{(yx'-xy')x'}{x'^2 + y'^2}</math>|| Parametric<br>Cartesian||<math>x=x(t)</math><br><math>y=y(t)</math>|||[[Pedal curve]] with pedal point (0;0)
|-
|<math>X[x,y]=\frac{(x'^2-y'^2)y'+2xyx'}{xy'-yx'}</math><br><br><math>Y[x,y]=\frac{(x'^2-y'^2)x'+2xyy'}{xy'-yx'}</math>|| Parametric<br>Cartesian||<math>x=x(t)</math><br><math>y=y(t)</math>|||[[Negative pedal curve]] with pedal point (0;0)
|-
| <math>X[y] = \int_a^t \cos \left[\int_a^t \frac{1}{y} \,dt\right] dt</math><br><br><math>Y[y] = \int_a^t \sin \left[\int_a^t \frac{1}{y} \,dt\right] dt</math>||Intrinsic||<math>y=r(s)</math><br><math>s=t</math>||Intrinsic to<br>Cartesian<br>transformation
|-
! style="background:#eafaea" colspan=4|Metric functionals
|-
| <math>F[y]=||y||=\sqrt{\int_E y^2 \, dt}</math>|| || ||[[norm (mathematics)|Norm]]
|-
| <math>F[x,y]=\int_E xy \, dt</math>|| || ||[[Inner product]]
|-
| <math>F[x,y]=\arccos \left[\frac{\int_E xy \, dt}{\sqrt{\int_E x^2 \, dt}\sqrt{\int_E y^2 \, dt}}\right]</math>|| || ||[[Fubini-Study metric]]<br>(inner angle)
|-
! style="background:#eafaea" colspan=4|Distribution functionals
|-
| <math>F[x,y] = x * y = \int_E x(s) y(t - s)\, ds</math>|| || ||[[Convolution]]
|-
| <math>F[y] = \int_E y \ln y \, dy</math>|| || ||[[Differential entropy]]
|-
| <math>F[y] = \int_E yt\,dt</math>|| || ||[[Expected value]]
|-
| <math>F[y] = \int_E (t-\int_E yt\,dt)^2y\,dt</math>|| || ||[[Variance]]
|}
 
==See also==
* [[List of transforms]]
* [[List of Fourier-related transforms]]
* [[Transfer operator]]
* [[Fredholm operator]]
* [[Borel summation|Borel transform]]
* [[Table of mathematical symbols]]
 
[[Category:Mathematics-related lists|Operators]]
[[Category:Functional analysis]]
[[Category:Curves]]

Latest revision as of 12:27, 16 March 2013

In mathematics, an operator or transform is a function from one space of functions to another. Operators occur commonly in engineering, physics and mathematics. Many are integral operators and differential operators.

In the following L is an operator

L:𝒢

which takes a function y to another function L[y]𝒢. Here, and 𝒢 are some unspecified function spaces, such as Hardy space, Lp space, Sobolev space, or, more vaguely, the space of holomorphic functions.

Expression Curve
definition
Variables Description
Linear transformations
L[y]=y(n) Derivative of nth order
L[y]=atydt Cartesian y=y(x)
x=t
Integral, area
L[y]=yf Composition operator
L[y]=yt+yt2 Even component
L[y]=ytyt2 Odd component
L[y]=y(t+1)yt=Δy Difference operator
L[y]=y(t)y(t1)=y Backward difference (Nabla operator)
L[y]=y=Δ1y Indefinite sum operator (inverse operator of difference)
L[y]=(py)+qy Sturm–Liouville operator
Non-linear transformations
F[y]=y[1] Inverse function
F[y]=ty'[1]yy'[1] Legendre transformation
F[y]=fy Left composition
F[y]=y Indefinite product
F[y]=yy Logarithmic derivative
F[y]=tyy Elasticity
F[y]=yy32(yy)2 Schwarzian derivative
F[y]=at|y|dt Total variation
F[y]=1taatydt Arithmetic mean
F[y]=exp(1taatlnydt) Geometric mean
F[y]=yy Cartesian y=y(x)
x=t
Subtangent
F[x,y]=yxy Parametric
Cartesian
x=x(t)
y=y(t)
F[r]=r2r Polar r=r(ϕ)
ϕ=t
F[r]=12atr2dt Polar r=r(ϕ)
ϕ=t
Sector area
F[y]=at1+y'2dt Cartesian y=y(x)
x=t
Arc length
F[x,y]=atx'2+y'2dt Parametric
Cartesian
x=x(t)
y=y(t)
F[r]=atr2+r'2dt Polar r=r(ϕ)
ϕ=t
F[x,y]=aty3dt Cartesian y=y(x)
x=t
Affine arc length
F[x,y]=atxyxy3dt Parametric
Cartesian
x=x(t)
y=y(t)
F[x,y,z]=atz(xyyx)+z(xyxy)+z(xyxy)3 Parametric
Cartesian
x=x(t)
y=y(t)
z=z(t)
F[y]=y(1+y'2)3/2 Cartesian y=y(x)
x=t
Curvature
F[x,y]=xyyx(x'2+y'2)3/2 Parametric
Cartesian
x=x(t)
y=y(t)
F[r]=r2+2r'2rr(r2+r'2)3/2 Polar r=r(ϕ)
ϕ=t
F[x,y,z]=(zyzy)2+(xzzx)2+(yxxy)2(x'2+y'2+z'2)3/2 Parametric
Cartesian
x=x(t)
y=y(t)
z=z(t)
F[y]=13y(y)5/359y'2(y)8/3 Cartesian y=y(x)
x=t
Affine curvature
F[x,y]=xyxy(xyxy)5/312[1(xyxy)2/3] Parametric
Cartesian
x=x(t)
y=y(t)
F[x,y,z]=z(xyyx)+z(xyxy)+z(xyxy)(x'2+y'2+z'2)(x'2+y'2+z'2) Parametric
Cartesian
x=x(t)
y=y(t)
z=z(t)
Torsion of curves
X[x,y]=yyxxy

Y[x,y]=xxyyx
Parametric
Cartesian
x=x(t)
y=y(t)
Dual curve
(tangent coordinates)
X[x,y]=x+ayx'2+y'2

Y[x,y]=yaxx'2+y'2
Parametric
Cartesian
x=x(t)
y=y(t)
Parallel curve
X[x,y]=x+yx'2+y'2xyyx

Y[x,y]=y+xx'2+y'2yxxy
Parametric
Cartesian
x=x(t)
y=y(t)
Evolute
F[r]=t(rr[1]) Intrinsic r=r(s)
s=t
X[x,y]=xxatx'2+y'2dtx'2+y'2

Y[x,y]=yyatx'2+y'2dtx'2+y'2
Parametric
Cartesian
x=x(t)
y=y(t)
Involute
X[x,y]=(xyyx)yx'2+y'2

Y[x,y]=(yxxy)xx'2+y'2
Parametric
Cartesian
x=x(t)
y=y(t)
Pedal curve with pedal point (0;0)
X[x,y]=(x'2y'2)y+2xyxxyyx

Y[x,y]=(x'2y'2)x+2xyyxyyx
Parametric
Cartesian
x=x(t)
y=y(t)
Negative pedal curve with pedal point (0;0)
X[y]=atcos[at1ydt]dt

Y[y]=atsin[at1ydt]dt
Intrinsic y=r(s)
s=t
Intrinsic to
Cartesian
transformation
Metric functionals
F[y]=||y||=Ey2dt Norm
F[x,y]=Exydt Inner product
F[x,y]=arccos[ExydtEx2dtEy2dt] Fubini-Study metric
(inner angle)
Distribution functionals
F[x,y]=x*y=Ex(s)y(ts)ds Convolution
F[y]=Eylnydy Differential entropy
F[y]=Eytdt Expected value
F[y]=E(tEytdt)2ydt Variance

See also