|
|
Line 1: |
Line 1: |
| In mathematics, the '''quadratic eigenvalue problem<ref>F. Tisseur and K. Meerbergen, The quadratic eigenvalue problem, SIAM
| | Golda is what's created on my birth certification even though it is not the name on my beginning certificate. I've usually loved living in Alaska. To perform lacross is the factor I love most of all. Distributing manufacturing is where her main income comes from.<br><br>my web-site - authentic psychic readings [[http://www.seekavideo.com/playlist/2199/video/ seekavideo.com]] |
| Rev., 43 (2001), pp. 235–286.</ref> (QEP)''', is to find [[scalar (mathematics)|scalar]] [[eigenvalue]]s <math>\lambda\,</math>, left [[eigenvector]]s <math>y\,</math> and right eigenvectors <math>x\,</math> such that
| |
| | |
| :<math> Q(\lambda)x = 0\text{ and }y^\ast Q(\lambda) = 0,\, </math>
| |
| | |
| where <math>Q(\lambda)=\lambda^2 A_2 + \lambda A_1 + A_0\,</math>, with matrix coefficients <math>A_2, \, A_1, A_0 \in \mathbb{C}^{n \times n}</math> and we require that <math>A_2\,\neq 0</math>, (so that we have a nonzero leading coefficient). There are <math>2n\,</math> eigenvalues that may be ''infinite'' or finite, and possibly zero. This is a special case of a [[nonlinear eigenproblem]]. <math>Q(\lambda)</math> is also known as a quadratic matrix polynomial.
| |
| | |
| ==Applications==
| |
| A QEP can result in part of the dynamic analysis of structures discretized by the [[finite element method]]. In this case the quadratic, <math>Q(\lambda)\,</math> has the form <math>Q(\lambda)=\lambda^2 M + \lambda C + K\,</math>, where <math>M\,</math> is the [[mass matrix]], <math>C\,</math> is the [[damping matrix]] and <math>K\,</math> is the [[stiffness matrix]].
| |
| Other applications include vibro-acoustics and fluid dynamics.
| |
| | |
| ==Methods of Solution==
| |
| | |
| Direct methods for solving the standard or generalized eigenvalue problems <math> Ax = \lambda x</math> and <math> Ax = \lambda B x </math>
| |
| are based on transforming the problem to [[Schur form|Schur]] or [[Generalized Schur form]]. However, there is no analogous form for quadratic matrix polynomials.
| |
| One approach is to transform the quadratic matrix polynomial to a linear [[matrix pencil]] (<math> A-\lambda B</math>), and solve a generalized
| |
| eigenvalue problem. Once eigenvalues and eigenvectors of the linear problem have been determined, eigenvectors and eigenvalues of the quadratic can be determined.
| |
| | |
| The most common linearization is the first companion linearization
| |
| :<math>
| |
| L(\lambda) =
| |
| \lambda
| |
| \begin{bmatrix}
| |
| M & 0 \\
| |
| 0 & I_n
| |
| \end{bmatrix}
| |
| +
| |
| \begin{bmatrix}
| |
| C & K \\
| |
| -I_n & 0
| |
| \end{bmatrix},
| |
| </math>
| |
| where <math>I_n</math> is the <math>n</math>-by-<math>n</math> identity matrix, with corresponding eigenvector | |
| :<math> | |
| z =
| |
| \begin{bmatrix}
| |
| \lambda x \\
| |
| x
| |
| \end{bmatrix}.
| |
| </math>
| |
| We solve <math> L(\lambda) z = 0 </math> for <math> \lambda </math> and <math>z</math>, for example by computing the Generalized Schur form. We can then
| |
| take the first <math>n</math> components of <math>z</math> as the eigenvector <math>x</math> of the original quadratic <math>Q(\lambda)</math>.
| |
| | |
| {{mathapplied-stub}}
| |
| | |
| ==References==
| |
| <references/>
| |
| | |
| [[Category:Linear algebra]]
| |
Golda is what's created on my birth certification even though it is not the name on my beginning certificate. I've usually loved living in Alaska. To perform lacross is the factor I love most of all. Distributing manufacturing is where her main income comes from.
my web-site - authentic psychic readings [seekavideo.com]