Weyl's inequality: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
en>DSmath
 
Line 1: Line 1:
In [[mathematics]], '''Midy's theorem''', named after [[France|French]] [[mathematician]] E. Midy,<ref>{{cite journal|last=Leavitt|first=William G.|title=A Theorem on Repeating Decimals|journal=The American Mathematical Monthly|date=June 1967|volume=74|issue=6|pages=669–673|url=http://digitalcommons.unl.edu/mathfacpub/48/|publisher=Mathematical Association of America|doi=10.2307/2314251}}</ref><ref>{{cite web|last=Kemeny|first=John|title=The Secret Theorem of M. E. Midy = Casting In Nines|url=http://johnkemeny.com/blog/?p=393|accessdate=27 November 2011}}</ref>  is a statement about the [[decimal]] expansion of [[Fraction (mathematics)|fraction]]s ''a''/''p'' where ''p'' is a [[prime number|prime]] and ''a''/''p'' has a [[repeating decimal]] expansion with an even period. If the period of the decimal representation of ''a''/''p'' is 2''n'', so that
Greetings. Allow me begin by telling you the author's name - Phebe. South Dakota is exactly where I've usually been residing. For years I've been working as a payroll clerk. To gather coins is 1 of over the counter std test - [http://www.videoworld.com/blog/211112 source website], things I love most.
 
:<math>\frac{a}{p}=0.\overline{a_1a_2a_3\dots a_na_{n+1}\dots a_{2n}}</math>
 
then the digits in the second half of the repeating decimal period are the [[method of complements#Numeric complements|9s complement]] of the corresponding digits in its first half. In other words
 
:<math>a_i+a_{i+n}=9 \, </math>
:<math>a_1\dots a_n+a_{n+1}\dots a_{2n}=10^n-1. \, </math>
 
For example
 
:<math>\frac{1}{17}=0.\overline{0588235294117647}\text{ and }05882352+94117647=99999999. \, </math>
 
==Midy's theorem in other bases==
Midy's theorem and its extension do not depend on special properties of the decimal expansion, but work equally well in any [[base (exponentiation)|base]] ''b'', provided we replace 10<sup>''k''</sup>&nbsp;&minus;&nbsp;1 with ''b''<sup>''k''</sup>&nbsp;&minus;&nbsp;1 and carry out addition in base ''b''. For example, in [[octal]]
 
:<math>\frac{1}{19}=0.\overline{032745}_8</math>
:<math>032_8+745_8=777_8 \, </math>
:<math>03_8+27_8+45_8=77_8. \, </math>
 
==Proof of Midy's theorem==
Short proofs of Midy's theorem can be given using results from [[group theory]]. However, it is also possible to prove Midy's theorem using [[elementary algebra]] and [[modular arithmetic]]:
 
Let ''p'' be a prime and ''a''/''p'' be a fraction between 0 and 1. Suppose the expansion of ''a''/''p'' in base ''b'' has a period of ''ℓ'', so
 
:<math>
\begin{align}
& \frac{a}{p} = [0.\overline{a_1a_2\dots a_\ell}]_b \\[6pt]
& \Rightarrow\frac{a}{p}b^\ell = [a_1a_2\dots a_\ell.\overline{a_1a_2\dots a_\ell}]_b \\[6pt]
& \Rightarrow\frac{a}{p}b^\ell = N+[0.\overline{a_1a_2\dots a_\ell}]_b=N+\frac{a}{p} \\[6pt]
& \Rightarrow\frac{a}{p} = \frac{N}{b^\ell-1}
\end{align}
</math>
 
where ''N'' is the integer whose expansion in base ''b'' is the string ''a''<sub>1</sub>''a''<sub>2</sub>...''a''<sub>''ℓ''</sub>.
 
Note that ''b''<sup>&nbsp;''ℓ''</sup>&nbsp;&minus;&nbsp;1 is a multiple of ''p'' because (''b''<sup>&nbsp;''ℓ''</sup>&nbsp;&minus;&nbsp;1)''a''/''p'' is an integer. Also ''b''<sup>''n''</sup>&minus;1 is ''not'' a multiple of ''p'' for any value of ''n'' less than ''ℓ'', because otherwise the repeating period of ''a''/''p'' in base ''b'' would be less than ''ℓ''.
 
Now suppose that ''ℓ''&nbsp;=&nbsp;''hk''. Then ''b''<sup>&nbsp;''ℓ''</sup>&nbsp;&minus;&nbsp;1 is a multiple of ''b''<sup>''k''</sup>&nbsp;&minus;&nbsp;1. (To see this, substitute ''x'' for ''b''<sup>''k''</sup>; then ''b''<sup>''ℓ''</sup>&nbsp;=&nbsp;''x''<sup>''h''</sup> and ''x''&nbsp;&minus;&nbsp;1 is a factor of ''x''<sup>''h''</sup>&nbsp;&minus;&nbsp;1. ) Say ''b''<sup>&nbsp;''ℓ''</sup>&nbsp;&minus;&nbsp;1 =&nbsp;''m''(''b''<sup>''k''</sup>&nbsp;&minus;&nbsp;1), so
 
:<math>\frac{a}{p}=\frac{N}{m(b^k-1)}.</math>
 
But ''b''<sup>&nbsp;''ℓ''</sup>&nbsp;&minus;&nbsp;1 is a multiple of ''p''; ''b''<sup>''k''</sup>&nbsp;&minus;&nbsp;1 is ''not'' a multiple of ''p'' (because ''k'' is less than ''ℓ''&nbsp;); and ''p'' is a prime; so ''m'' must be a multiple of ''p'' and
 
:<math>\frac{am}{p}=\frac{N}{b^k-1}</math>
 
is an integer. In other words
 
:<math>N\equiv0\pmod{b^k-1}. \, </math>
 
Now split the string ''a''<sub>1</sub>''a''<sub>2</sub>...''a''<sub>''ℓ''</sub> into ''h'' equal parts of length ''k'', and let these represent the integers ''N''<sub>0</sub>...''N''<sub>''h''&nbsp;&minus;&nbsp;1</sub> in base ''b'', so that
 
:<math>
\begin{align}
N_{h-1} & = [a_1\dots a_k]_b \\
N_{h-2} & = [a_{k+1}\dots a_{2k}]_b \\
& {}\  \  \vdots \\
N_0 & = [a_{l-k+1}\dots a_l]_b
\end{align}
</math>
 
To prove Midy's extended theorem in base ''b'' we must show that the sum of the ''h'' integers ''N''<sub>''i''</sub> is a multiple of ''b''<sup>''k''</sup>&nbsp;&minus;&nbsp;1.
 
Since ''b''<sup>''k''</sup> is congruent to 1 modulo ''b''<sup>''k''</sup>&nbsp;&minus;&nbsp;1, any power of ''b''<sup>''k''</sup> will also be congruent to 1 modulo ''b''<sup>''k''</sup>&nbsp;&minus;&nbsp;1. So
 
:<math>N=\sum_{i=0}^{h-1}N_ib^{ik}=\sum_{i=0}^{h-1}N_i(b^{k})^i</math>
:<math>\Rightarrow N \equiv \sum_{i=0}^{h-1}N_i \pmod{b^k-1}</math>
:<math>\Rightarrow \sum_{i=0}^{h-1}N_i \equiv 0 \pmod{b^k-1}</math>
 
which proves Midy's extended theorem in base ''b''.
 
To prove the original Midy's theorem, take the special case where ''h'' = 2. Note that ''N''<sub>0</sub> and ''N''<sub>1</sub> are both represented by strings of ''k'' digits in base ''b'' so both satisfy
 
:<math>0 \leq N_i \leq b^k-1. \, </math>
 
''N''<sub>0</sub> and ''N''<sub>1</sub> cannot both equal 0 (otherwise ''a''/''p'' = 0) and cannot both equal ''b''<sup>''k''</sup>&nbsp;&minus;&nbsp;1 (otherwise ''a''/''p'' = 1), so
 
:<math>0 < N_0+N_1 < 2(b^k-1) \, </math>
 
and since ''N''<sub>0</sub>&nbsp;+&nbsp;''N''<sub>1</sub> is a multiple of ''b''<sup>''k''</sup>&nbsp;&minus;&nbsp;1, it follows that
 
:<math>N_0+N_1 = b^k-1. \, </math>
 
==Notes==
<references/>
==References==
*Rademacher, H. and Toeplitz, O. The Enjoyment of Mathematics: Selections from Mathematics for the Amateur. Princeton, NJ: Princeton University Press, pp. 158-160, 1957.
*E. Midy, De Quelques Propriétés des Nombres et des Fractions Décimales Périodiques.
College of Nantes, France: 1836.
*[[Kenneth A. Ross|Ross, Kenneth A.]] Repeating decimals: a period piece. Math. Mag. 83 (2010), no. 1, 33–45.
 
==External links==
* {{MathWorld|urlname=MidysTheorem|title=Midy's Theorem}}
 
[[Category:Theorems in number theory]]
[[Category:Fractions]]
[[Category:Numeral systems]]

Latest revision as of 19:39, 7 November 2014

Greetings. Allow me begin by telling you the author's name - Phebe. South Dakota is exactly where I've usually been residing. For years I've been working as a payroll clerk. To gather coins is 1 of over the counter std test - source website, things I love most.