|
|
(One intermediate revision by one other user not shown) |
Line 1: |
Line 1: |
| {{About|an isotope of plutonium|the film also known as ''The Half Life of Timofey Berezin''|Pu-239 (film)}}
| | Hello, my title is Andrew and my wife doesn't like it at all. Office supervising is where her main earnings comes from. I've always cherished living in Alaska. I am truly fond of handwriting but I can't make it my profession truly.<br><br>Here is my blog - best psychic readings ([http://alles-herunterladen.de/excellent-advice-for-picking-the-ideal-hobby/ alles-herunterladen.de]) |
| {{Refimprove|date=January 2009}}
| |
| {{Infobox isotope
| |
| | alternate_names =
| |
| | symbol =Pu
| |
| | mass_number =239
| |
| | mass = 239.0521634
| |
| | num_neutrons =145
| |
| | num_protons =94
| |
| | abundance =
| |
| | halflife = 24,100 years
| |
| | error_halflife =
| |
| | background = #FF6
| |
| | text_color =
| |
| | image = Plutonium ring.jpg
| |
| | image_caption = A 99.96% pure ring of plutonium
| |
| | decay_product =Uranium-235
| |
| | decay_symbol =U
| |
| | decay_mass =235
| |
| | decay_mode1 =[[Alpha decay]]
| |
| | decay_energy1 = 5.245
| |
| | decay_mode2 =
| |
| | decay_energy2 =
| |
| | decay_mode3 =
| |
| | decay_energy3 =
| |
| | decay_mode4 =
| |
| | decay_energy4 =
| |
| | parent = Curium-243
| |
| | parent_symbol =Cm
| |
| | parent_mass =243
| |
| | parent_decay =a
| |
| | parent2 =Americium-239
| |
| | parent2_symbol =Am
| |
| | parent2_mass =239
| |
| | parent2_decay =ec
| |
| | parent3 =Neptunium-239
| |
| | parent3_symbol =Np
| |
| | parent3_mass =239
| |
| | parent3_decay =b-
| |
| | spin = +½
| |
| | excess_energy =
| |
| | error1 =
| |
| | binding_energy =
| |
| | error2 =
| |
| }}
| |
| '''Plutonium-239''' is an [[isotope]] of [[plutonium]]. Plutonium-239 is the primary [[fissile]] isotope used for the production of [[nuclear weapon]]s, although [[uranium-235]] has also been used. Plutonium-239 is also one of the three main isotopes demonstrated usable as fuel in [[nuclear reactor]]s, along with [[uranium-235]] and [[uranium-233]]. Plutonium-239 has a [[half-life]] of 24,100 years.
| |
| | |
| ==Nuclear properties==
| |
| The nuclear properties of plutonium-239, as well as the ability to produce large amounts of nearly pure Pu-239 more cheaply than highly enriched [[weapons-grade]] uranium-235, led to its use in [[nuclear weapons]] and [[nuclear power stations]]. The [[nuclear fission|fissioning]] of an atom of uranium-235 in the reactor of a [[nuclear power plant]] produces two to three neutrons, and these neutrons can be absorbed by uranium-238 to produce plutonium-239 and other [[isotope]]s. Plutonium-239 can also absorb neutrons and fission along with the uranium-235 in a reactor.
| |
| | |
| Of all the common nuclear fuels, Pu-239 has the smallest [[critical mass]].
| |
| A spherical untampered critical mass is about 11 kg (24.2 lbs),<ref>[http://www.fas.org/nuke/intro/nuke/design.htm FAS Nuclear Wepons Design FAQ], Accessed 2010-9-2</ref> 10.2 cm (4") in diameter. Using appropriate triggers, neutron reflectors, implosion geometry and tampers, this critical mass can be reduced by more than twofold. This optimization usually requires a large nuclear development organization supported by a [[sovereign nation]].
| |
| | |
| The fission of one atom of Pu-239 generates 207.1 [[Electronvolt|MeV]] = 3.318 × 10<sup>−11</sup> J, i.e. 19.98 TJ/[[mole (unit)|mol]] = 83.61 TJ/kg.<ref name="kayelaby">{{cite web |url=http://www.kayelaby.npl.co.uk/atomic_and_nuclear_physics/4_7/4_7_1.html |title=Table of Physical and Chemical Constants, Sec 4.7.1: Nuclear Fission |publisher=Kaye & Laby Online}}</ref>
| |
| | |
| <center>
| |
| {| class="wikitable" align="center"
| |
| !type of radiation source (fission of Pu-239) !!Average energy released [MeV]<ref name="kayelaby"/>
| |
| |-
| |
| |style="background:#8989f9"|Instantaneously released energy||style="background:#8989f9"|
| |
| |-
| |
| |Kinetic energy of fission fragments||style="background:#e0ffe0" align=center|175.8
| |
| |-
| |
| |Kinetic energy of prompt neutrons||style="background:#e0ffe0" align=center| 5.9
| |
| |-
| |
| |Energy carried by prompt γ-rays||style="background:#e0ffe0" align=center| 7.8
| |
| |-
| |
| |style="background:#8989f9"|Energy from decaying fission products||style="background:#8989f9"|
| |
| |-
| |
| |Energy of β−-particles||style="background:#e0ffe0" align=center| 5.3
| |
| |-
| |
| |Energy of anti-neutrinos||align=center| 7.1
| |
| |-
| |
| |Energy of delayed γ-rays ||style="background:#e0ffe0" align=center| 5.2
| |
| |-
| |
| |style="background:#f96060"|Sum (total decay energy)||style="background:#f96060" align=center|207.1
| |
| |-
| |
| |Energy released when those prompt neutrons which don't (re)produce fission are captured||style="background:#e0ffe0" align=center| 11.5
| |
| |-
| |
| |style="background:#60c060"|Energy converted into heat in an operating thermal nuclear reactor (antineutrino energy escapes reactor and does not appear in total heat)||style="background:#60c060" align=center|211.5
| |
| |}
| |
| </center>
| |
| | |
| == Manufacturing ==
| |
| Plutonium is made from U-238. Pu-239 is normally created in nuclear reactors by transmutation of individual atoms of one of the isotopes of uranium present in the fuel rods. Occasionally, when an atom of [[Uranium-238|U-238]] is exposed to [[neutron radiation]], its nucleus will capture a [[neutron]], changing it to [[Uranium-239|U-239]]. This happens more easily with lower Kinetic Energy (as U-238 fission activation is 6.6MeV). The U-239 then rapidly undergoes two [[beta decay]]s. After the <sup>238</sup>U absorbs a neutron to become <sup>239</sup>U it then emits an [[electron]] and an [[antineutrino|anti-neutrino]] (<math>\bar{\nu}_e</math>) by [[beta decay|β<sup>−</sup> decay]] to become [[Neptunium-239]] (<sup>239</sup>Np) and then emits another electron and anti-neutrino by a second β<sup>−</sup> decay to become <sup>239</sup>Pu (when uranium 238 gains a neutron it becomes uranium 239 which eventually decays to plutonium 239):
| |
| | |
| :<math>\mathrm{^{238}_{\ 92}U \ + \ ^{1}_{0}n \ \longrightarrow \ ^{239}_{\ 92}U \ \xrightarrow [23.5\ min]{\beta^-} \ ^{239}_{\ 93}Np \ \xrightarrow [2.3565\ d]{\beta^-} \ ^{239}_{\ 94}Pu}</math>
| |
| | |
| Fission activity is relatively rare, so even after significant exposure, the Pu-239 is still mixed with a great deal of U-238 (and possibly other isotopes of uranium), oxygen, other components of the original material, and [[fission products]]. Only if the fuel has been exposed for a few days in the reactor, can the Pu-239 be [[Nuclear reprocessing|chemically separated]] from the rest of the material to yield high-purity Pu-239 metal.
| |
| | |
| Pu-239 has a higher probability for fission than U-235 and a larger number of neutrons produced per fission event, so it has a smaller [[critical mass]]. Pure Pu-239 also has a reasonably low rate of neutron emission due to [[spontaneous fission]] (10 fission/s-kg), making it feasible to assemble a mass that is highly supercritical before a detonation [[nuclear chain reaction|chain reaction]] begins.
| |
| | |
| In practice, however, reactor-bred plutonium produced will invariably contain a certain amount of [[Pu-240]] due to the tendency of Pu-239 to absorb an additional neutron during production. Pu-240 has a high rate of [[spontaneous fission]] events (415,000 fission/s-kg), making it an undesirable contaminant. As a result, plutonium containing a significant fraction of Pu-240 is not well-suited to use in nuclear weapons; it emits [[neutron radiation]], making handling more difficult, and its presence can lead to a "[[Fizzle (nuclear test)|fizzle]]" in which a small explosion occurs, destroying the weapon but not causing fission of a significant fraction of the fuel. (However, in modern nuclear weapons using neutron generators for initiation and [[fusion boosting]] to supply extra neutrons, fizzling is not an issue.) It is because of this limitation that plutonium-based weapons must be implosion-type, rather than gun-type. (The US has constructed a single experimental [[Reactor-grade plutonium#Reactor-grade plutonium nuclear test|bomb using only reactor-grade plutonium]].) Moreover, Pu-239 and Pu-240 cannot be chemically distinguished, so expensive and difficult [[isotope separation]] would be necessary to separate them. [[Weapons-grade plutonium]] is defined as containing no more than 7% Pu-240; this is achieved by only exposing U-238 to neutron sources for short periods of time to minimize the Pu-240 produced. Pu-240 exposed to alpha particles will incite a nuclear fission.{{Citation needed|date=September 2009}}
| |
| | |
| Plutonium is classified according to the percentage of the contaminant plutonium-240 that it contains:
| |
| | |
| * '''Supergrade''' 2–3%
| |
| * '''Weapons grade''' less than 7%
| |
| * '''Fuel grade''' 7–18%
| |
| * '''Reactor grade''' 18% or more
| |
| | |
| A nuclear reactor that is used to produce plutonium for weapons therefore generally has a means for exposing U-238 to neutron radiation and for frequently replacing the irradiated U-238 with new U-238. A reactor running on unenriched or moderately enriched uranium contains a great deal of U-238. However, most commercial [[nuclear power reactor]] designs require the entire reactor to shut down, often for weeks, in order to change the fuel elements. They therefore produce plutonium in a mix of isotopes that is not well-suited to weapon construction. Such a reactor could have machinery added that would permit U-238 slugs to be placed near the core and changed frequently, or it could be shut down frequently, so proliferation is a concern; for this reason, the [[International Atomic Energy Agency]] inspects licensed reactors often. A few commercial power reactor designs, such as the ''reaktor bolshoy moshchnosti kanalniy'' ([[RBMK]]) and pressurized heavy water reactor ([[PHWR]]), do permit refueling without shutdowns, and they may pose a proliferation risk. (In fact, the [[RBMK]] was built by the Soviet Union during the Cold War, so despite their ostensibly peaceful purpose, it is likely that plutonium production was a design criterion.) By contrast, the Canadian [[CANDU]] [[CANDU#Purpose_of_using_heavy_water|heavy-water moderated]] [[CANDU#Fuel_cycles|natural-uranium fueled]] reactor can also be [[CANDU#Economics|refueled while operating]], but it normally consumes most of the Pu-239 it produces ''in situ;'' thus, it is not only [[CANDU#Nuclear_nonproliferation|inherently less proliferative]] than most reactors, but can even be operated as an [[Nuclear_transmutation#Transmutation_of_nuclear_wastes|"actinide incinerator."]]<ref>{{cite web
| |
| |url=http://www.nuclearfaq.ca/brat_fuel.htm
| |
| |title=The Evolution of CANDU Fuel Cycles and their Potential Contribution to World Peace
| |
| |author=Jeremy J. Whitlock.}}</ref> The American [[Integral Fast Reactor|IFR]] (Integral Fast Reactor) can also be operated in an [[Integral_Fast_Reactor#Efficiency_and_fuel_cycle|"incineration mode,"]] having some advantages in not building up the [[Pu-242]] isotope or the long-lived [[actinide]]s, either of which cannot be easily burned except in a fast reactor. Also IFR fuel has a high proportion of burnable isotopes, while in CANDU an inert material is needed to dilute the fuel; this means the IFR can burn a higher fraction of its fuel before needing reprocessing. Most plutonium is produced in [[research reactor]]s or plutonium production reactors called [[breeder reactor]]s because they produce more plutonium than they consume fuel; in principle, such reactors make extremely efficient use of natural uranium. In practice, their construction and operation is sufficiently difficult that they are generally only used to produce plutonium. Breeder reactors are generally (but not always) [[fast reactor]]s, since [[fast neutron]]s are somewhat more efficient at plutonium production.
| |
| | |
| === Supergrade plutonium ===
| |
| The "supergrade" fission fuel, which has less radioactivity, is used in the primary stage of [[US Navy]] [[nuclear weapon]]s in place of the conventional [[plutonium]] used in the Air Force's versions. "Supergrade" is industry [[parlance]] for plutonium alloy bearing an exceptionally high fraction of Pu-239 (>95%), leaving a very low amount of [[Pu-240]] which is a high [[spontaneous fission]] [[isotope]] (see above). Such plutonium is produced from [[fuel rod]]s that have been irradiated a very short time as measured in MW-Day/Ton [[burnup]]. Such low irradiation times limit the amount of additional [[neutron capture]] and therefore buildup of alternate isotope products such as Pu-240 in the rod, and also by consequence is considerably more expensive to produce, needing far more rods irradiated and processed for a given amount of plutonium.
| |
| | |
| Plutonium-240, in addition to being a neutron emitter after fission, is a [[gamma radiation|gamma]] emitter in that process as well, and so is responsible for a large fraction of the radiation from stored nuclear weapons. [[Submarine]] crew members routinely operate in close proximity to stored weapons in torpedo rooms, unlike [[Air Force]] missiles where exposures are relatively brief—hence justifying the additional costs of the premium supergrade alloy used on many naval nuclear torpedo weapons. Supergrade plutonium is used in [[W80 (nuclear warhead)|W80]] warheads. <!-- taken from W80 -->
| |
| | |
| == In nuclear power reactors ==
| |
| | |
| In any operating nuclear reactor containing U-238, some plutonium-239 will accumulate in the nuclear fuel.<ref>{{cite book |title=Radioactivity, Ionizing Radiation, and Nuclear Energy |last=Hala |first=Jiri |coauthors=James D. Navratil |year=2003 |publisher=Konvoj |location=Brno |isbn=80-7302-053-X |page=102}}</ref> Unlike reactors used to produce weapons-grade plutonium, commercial nuclear power reactors typically operate at a high [[burnup]] that allows a significant amount of plutonium to build up in irradiated reactor fuel. Plutonium-239 will be present both in the reactor core during operation and in [[spent nuclear fuel]] that has been removed from the reactor at the end of the fuel assembly’s service life (typically several years). Spent nuclear fuel commonly contains about 0.8% plutonium-239.
| |
| | |
| Plutonium-239 present in reactor fuel can absorb neutrons and fission just as uranium-235 can. Since plutonium-239 is constantly being created in the reactor core during operation, the use of plutonium-239 as nuclear fuel in power plants can occur without [[nuclear reprocessing|reprocessing of spent fuel]]; the plutonium-239 is fissioned in the same fuel rods in which it is produced. Fissioning of plutonium-239 provides about one-third of the total energy produced in a typical commercial nuclear power plant. Reactor fuel would accumulate much more than 0.8% plutonium-239 during its service life if some plutonium-239 were not constantly being “burned off” by fissioning.
| |
| | |
| A small percentage of plutonium-239 can be deliberately added to fresh nuclear fuel. Such fuel is called [[MOX fuel|MOX (mixed oxide) fuel]], as it contains a mixture of uranium oxide (UO<sub>2</sub>) and plutonium oxide (PuO<sub>2</sub>). The addition of plutonium-239 reduces or eliminates the need to [[enriched uranium|enrich the uranium]] in the fuel.
| |
| | |
| ==Hazards==
| |
| Plutonium-239 emits [[alpha ray]]s to become the fairly harmless [[uranium-235]]. As an alpha emitter, plutonium-239 is not particularly dangerous as an external radiation source, but if it is ingested or breathed in as dust it is very dangerous and carcinogenic. It has been estimated that a pound (454 grams) of plutonium inhaled as plutonium oxide dust could give cancer to two million people.<ref>{{cite book|title=The Nuclear Energy Option|year=1990|publisher=Plenum Press|isbn=978-0306435676|url=http://www.phyast.pitt.edu/~blc/book/chapter13.html|author=Bernard L. Cohen|authorlink=Bernard Cohen (physicist)|archiveurl=https://web.archive.org/web/20130721142313/http://www.phyast.pitt.edu/~blc/book/chapter13.html|archivedate=July 21, 2013|chapter=Chapter 13, Plutonium and bombs|deadurl=no}}</ref> Therefore as little as a milligram would be quite likely to cause cancer in a person. See also [[Plutonium#Precautions]].
| |
| | |
| Plutonium-239 can be used to make nuclear weapons, and the danger of it falling into the wrong hands has been one of the arguments against [[breeder reactor]]s. Its storage, as fuel or as nuclear waste, must be very secure.
| |
| | |
| == See also ==
| |
| * [[Teller-Ulam design]]
| |
| | |
| == References ==
| |
| <references/>
| |
| | |
| == External links ==
| |
| * [http://toxnet.nlm.nih.gov/cgi-bin/sis/search/r?dbs+hsdb:@term+@na+@rel+plutonium,+radioactive NLM Hazardous Substances Databank – Plutonium, Radioactive]
| |
| * [http://www.kayelaby.npl.co.uk/atomic_and_nuclear_physics/4_6/4_6_1_part09_090_099.html#Pu Table of nuclides with Pu-239 data at Kaye and Laby Online]
| |
| * [http://www.nucleide.org/DDEP_WG/Nuclides/Pu-239_tables.pdf,+Half-life Half-life of Plutinium-239]{{dead link|date=May 2013}}
| |
| | |
| {{Isotope|element=plutonium
| |
| |lighter=[[plutonium-238]]
| |
| |heavier=[[plutonium-240]]
| |
| |before=[[curium-243]] '''([[alpha decay|α]])<br />'''[[americium-239]] '''([[electron capture|EC]])<br />'''[[neptunium-239]] '''([[beta decay|β-]])
| |
| |after=[[uranium-235]] '''(α)
| |
| }}
| |
| | |
| [[Category:Actinides]]
| |
| [[Category:Fissile materials]]
| |
| [[Category:Isotopes of plutonium]]
| |
| [[Category:Special nuclear materials]]
| |