Mackey space: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
en>Tobias Bergemann
→‎Examples: Fix typo.
 
en>Monkbot
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
{{Unreferenced|date=December 2007}}
Zoologist Stephan from Grand Valley, likes to spend some time kite boarding, property developers [http://Westwoodchristian.org/?option=com_k2&view=itemlist&task=user&id=69149 condo for sale In singapore] singapore and base jumping. Discovered some amazing locales having spent 9 days at Mont-Saint-Michel and its Bay.
 
{{main|Laplace operator}}
 
==−div is adjoint to d==
The claim is made that −div is adjoint to ''d'':
 
:<math>\int_M df(X) \;\omega  = - \int_M f \, \operatorname{div} X \;\omega </math>
 
Proof of the above statement:
:<math>\int_M (f\mathrm{div}(X) + X(f)) \omega = \int_M (f\mathcal{L}_X + \mathcal{L}_X(f)) \omega </math>
 
::<math> = \int_M \mathcal{L}_X f\omega = \int_M \mathrm{d} \iota_X f\omega = \int_{\partial M} \iota_X f\omega</math>
 
If ''f'' has [[compact support]], then the last integral vanishes, and we have the desired result.
 
==Laplace&ndash;de Rham operator==
One may prove that the Laplace&ndash;de Rham operator is equivalent to the definition of the Laplace&ndash;Beltrami operator, when acting on a scalar function ''f''. This proof reads as:
 
:<math>\Delta f =  
\mathrm{d}\delta f + \delta\,\mathrm{d}f =
\delta\, \mathrm{d}f =
\delta \, \partial_i f \, \mathrm{d}x^i</math>
 
::<math> =
- *\mathrm{d}{*\partial_i f \, \mathrm{d}x^i} =
- *\mathrm{d}(\varepsilon_{i J}  \sqrt{|g|}\partial^i f \, \mathrm{d}x^J)</math>
 
::<math> =
- *\varepsilon_{i J} \, \partial_j
(\sqrt{|g|}\partial^i f)\, \mathrm{d} x^j \wedge \mathrm{d}x^J =
- * \frac{1}{\sqrt{|g|}} \, \partial_i (\sqrt{|g|}\,\partial^i f) \mathrm{vol}_n</math>
 
::<math> = -\frac{1}{\sqrt{|g|}}\, \partial_i (\sqrt{|g|}\,\partial^i f),</math>
 
where vol_n; is the [[volume form]] and &epsilon; is the completely antisymmetric [[Levi-Civita symbol]]. Note that in the above, the italic lower-case index ''i'' is a single index, whereas the upper-case Roman ''J'' stands for all of the remaining (''n''-1) indices.  Notice that the Laplace&ndash;de Rham operator is actually minus the Laplace&ndash;Beltrami operator; this minus sign follows from the conventional definition of the properties of the [[codifferential]]. Unfortunately, &Delta; is used to denote both; reader beware.
 
== Properties ==
Given scalar functions ''f'' and ''h'', and a real number ''a'', the Laplacian has the property:
 
:<math>\Delta(fh) = f \, \Delta h + 2 \partial_i f \, \partial^i h + h \, \Delta f.</math>
 
===Proof===
:<math>\Delta(fh) =
\delta\,\mathrm{d}fh =
\delta(f\,\mathrm{d}h + h\,\mathrm{d}f) =
*\mathrm{d}(f{*\mathrm{d}h}) + *\mathrm{d}(h{*\mathrm{d}f})\;</math>
 
:::<math> = *(f\,\mathrm{d}*\mathrm{d}h +
\mathrm{d}f \wedge *\mathrm{d}h +
\mathrm{d}h \wedge *\mathrm{d}f +
h\,\mathrm{d}*\mathrm{d}f)
</math>
 
:::<math> =
f*\mathrm{d}*\mathrm{d}h +
*(\mathrm{d}f \wedge *\mathrm{d}h +
\mathrm{d}h \wedge *\mathrm{d}f) +
h*\mathrm{d}*\mathrm{d}f</math>
 
:::<math> = f\, \Delta h </math>
 
::::<math> {} +
*(\partial_i f \, \mathrm{d}x^i \wedge
\varepsilon_{jJ} \sqrt{|g|} \partial^j h \, \mathrm{d}x^J +
\partial_i h \, \mathrm{d}x^i \wedge
\varepsilon_{jJ} \sqrt{|g|} \partial^j f \, \mathrm{d}x^J) </math>
 
::::<math> {} +
h \, \Delta f</math>
 
:::<math> = f \, \Delta h +
(\partial_i f \, \partial^i h +
\partial_i h \, \partial^i f){*\mathrm{vol}_n} +
h \, \Delta f </math>
 
:::<math> = f \, \Delta h +
2 \partial_i f \, \partial^i h +
h \, \Delta f</math>
 
where ''f'' and ''h'' are scalar functions.
 
{{DEFAULTSORT:Proofs involving the Laplace-Beltrami operator}}
[[Category:Article proofs]]
[[Category:Differential operators]]

Latest revision as of 02:10, 13 July 2014

Zoologist Stephan from Grand Valley, likes to spend some time kite boarding, property developers condo for sale In singapore singapore and base jumping. Discovered some amazing locales having spent 9 days at Mont-Saint-Michel and its Bay.