|
|
Line 1: |
Line 1: |
| {{multiple issues|
| | Our hotel is centrally located to all of the Tri Cities' area attractions, from the nearby Fashion Square Mall and Saginaw Art Museum to the open waters of Saginaw Bay.<br>The reasons Bruce abandons the scene of his crime become clearer over the course of the film, but most of his other decisions making a makeshift home out of his broken down snowplow, attempting a foolishly haphazard raid on a nearby cottage are difficult to grasp. That a haggard Haden Church plays Bruce completely straight only adds to the confusion, you wonder whether Whitewash is a sincere attempt to make a thriller gone desperately wrong.<br>http://caphsa.org/coach/?key=coach-factory-free-shipping-10 <br /> http://caphsa.org/coach/?key=coach-factory-bags-21 <br /> http://caphsa.org/coach/?key=coach-factory-outlet-shoes-66 <br /> http://caphsa.org/coach/?key=coach-factory-free-shipping-10 <br /> http://caphsa.org/coach/?key=what-happened-to-coach-factory-online-73 <br /> <br>http://wikis. If you beloved this write-up and you would like to obtain far more data about [http://www.bendtrapclub.com/cheap/ugg.asp Cheap Uggs Boots] kindly visit the website. ala.org/acrl/index.php/Main_Page<br>http://wiki.progdesigner.com/index.php?title=How_To_Find_Out_Everything_There_Is_To_Know_About_Bags_Outlet_In_7_Simple_Steps |
| {{no footnotes|date=September 2012}}
| |
| {{orphan|date=August 2012}}
| |
| }}
| |
| | |
| The Taylor polyhedra are the vertex-transitive polyhedra that are not included in the standard list of [[uniform polyhedra]].
| |
| | |
| Some are omitted because they include the double faces {<sup>2</sup>3},{<sup>2</sup>5/2 and {<sup>2</sup>5} that naturally result from the truncation of the inverse polygons {3/2} and {5/4} and the star polygon {5/2} respectively, all even denominator polygons.
| |
| | |
| Others are omitted because they include the cross polygon {4/2} and its double faced natural truncation {<sup>2</sup>4}, used to form the {4,4/2} family of cross polyhedra, analogous to the {5,5/2} family of star polyhedra.
| |
| | |
| Taken with the accepted uniform polyhedra, the Taylor polyhedra allow a more complete classification to emerge, without the peculiar gaps that currently exist within the uniform polyhedra.
| |
| | |
| These polyhedra generally have densities greater than 1, the tiling of the sphere that produces them taking place in multiple layers with several visits to any one vertex or edge
| |
| | |
| == List ==
| |
| {| class="wikitable sortable" style="text-align:center"
| |
| ! Name
| |
| ! [[Wythoff symbol|Wythoff<br>symbol]]
| |
| ! [[Schlafli symbol|Schläfli symbol]]
| |
| ! Taylor reference
| |
| ! Vertex figure
| |
| ! Vertices
| |
| ! Edges
| |
| ! Faces by type
| |
| |-
| |
| | [[Quasitruncated tetrahedron]]
| |
| | 3 2 |<sup>3</sup>/<sub>2</sub>
| |
| | t{3’, 3}
| |
| | {3, <sup>3</sup>/<sub>2</sub>} + 2{3, 3}
| |
| | <sup>2</sup>3.<sup>2</sup>3.3
| |
| | 4×3
| |
| | 6×3
| |
| | 4×<sup>2</sup>3<br>4×3
| |
| |-
| |
| | [[Quasitruncated dodecahedron]]
| |
| | 3 2 |<sup>5</sup>/<sub>4</sub>
| |
| | t{5’, 3}
| |
| | {3, <sup>5</sup>/<sub>2</sub> }+ 2{<sup>5</sup>/<sub>2</sub>, 5}
| |
| | <sup>2</sup>5/<sub>2</sub>.<sup>2</sup>5/<sub>2</sub>.3
| |
| | 12×5
| |
| | 30×3
| |
| | 12×<sup>2</sup>5/<sub>2</sub><br>20×3
| |
| |-
| |
| | [[Quasitruncated octahedron]]
| |
| | 4 2 |<sup>3</sup>/<sub>2</sub>
| |
| | t{3’, 4}
| |
| | {4, <sup>4</sup>/<sub>2</sub>} + 2{3, 4}
| |
| | <sup>2</sup>3.<sup>2</sup>3.4
| |
| | 6×4
| |
| | 12×3
| |
| | 8×<sup>2</sup>3<br>6×4
| |
| |-
| |
| | [[Quasitruncated icosahedron]]
| |
| | 5 2 |<sup>3</sup>/<sub>2</sub>
| |
| | t{3’, 5}
| |
| | {5, <sup>5</sup>/<sub>2</sub>} + 2{3, 5}
| |
| | <sup>2</sup>3.<sup>2</sup>3.5
| |
| | 12×5
| |
| | 30×3
| |
| | 20×<sup>2</sup>3<br>12×5
| |
| |-
| |
| | [[Triquasitruncated octahedron]]
| |
| | <sup>3</sup>/<sub>2</sub> 2 3|
| |
| | t<math>\left\{{3'\atop3}\right\}</math>
| |
| | [2.4a]
| |
| | <sup>2</sup>3.6.4
| |
| | 12×2
| |
| | 12×2<br>12×1
| |
| | 4×<sup>2</sup>3<br>4×6<br>6×4
| |
| |-
| |
| | [[Pentaquasitruncated icosidodecahedron]]
| |
| | 3 2 <sup>5</sup>/<sub>4</sub>|
| |
| | t<math>\left\{{5'\atop3}\right\}</math>
| |
| | [2.4d]
| |
| | <sup>2</sup>5/<sub>2</sub>.6.4
| |
| | 60×2
| |
| | 60×2<br>60×1
| |
| | 12×<sup>2</sup>5/<sub>2</sub><br>20×6<br>30×4
| |
| |-
| |
| | [[Triquasitruncated cuboctahedron]]
| |
| | <sup>3</sup>/<sub>2</sub> 2 4|
| |
| | t<math>\left\{{3'\atop4}\right\}</math>
| |
| | [2.4b]
| |
| | <sup>2</sup>3.8.4
| |
| | 24×2
| |
| | 24×2<br>24×1
| |
| | 8×<sup>2</sup>3<br>6×8<br>12×4
| |
| |-
| |
| | [[Triquasitruncated icosidodecahedron]]
| |
| | <sup>3</sup>/<sub>2</sub> 2 5|
| |
| | t<math>\left\{{3'\atop5}\right\}</math>
| |
| | [2.4e]
| |
| | <sup>2</sup>3.10.4
| |
| | 60×2
| |
| | 60×2<br>60×1
| |
| | 20×<sup>2</sup>3<br>12×10<br>30×4
| |
| |-
| |
| | [[Quasiquasitruncated icosidodecahedron]]
| |
| | <sup>3</sup>/<sub>2</sub> 2 <sup>5</sup>/<sub>4</sub>|
| |
| | t<math>\left\{{3'\atop5'}\right\}</math>
| |
| | [2.4f]
| |
| | <sup>2</sup>3.<sup>2</sup>5/<sub>2</sub>.4
| |
| | 20×6
| |
| | 60×3
| |
| | 12×<sup>2</sup>5/<sub>2</sub><br>20×<sup>2</sup>3<br>30×4
| |
| |-
| |
| | [[Quasiquasitruncated cuboctahedron]]
| |
| | <sup>3</sup>/<sub>2</sub> 2 <sup>4</sup>/<sub>3</sub>|
| |
| | t<math>\left\{{3'\atop4'}\right\}</math>
| |
| | [2.4c]
| |
| | <sup>2</sup>3.<sup>8</sup>/<sub>3</sub>.4
| |
| | 24×2
| |
| | 24×2<br>24×1
| |
| | 6×<sup>8</sup>/<sub>3</sub><br>8×<sup>2</sup>3<br>12×4
| |
| |-
| |
| | [[Quasirhombicosidodecahedron]]
| |
| | <sup>3</sup>/<sub>2</sub> 5 |2
| |
| | r'<math>\left\{{3\atop5}\right\}</math>
| |
| | [2.4h]
| |
| | 4.3/<sub>2</sub>.4.5
| |
| | 20×3
| |
| | 60×2
| |
| | 12×5<br>20×3<br>30×4
| |
| |-
| |
| | [[Quasisnub dodecahedron]]
| |
| |-
| |
| | [[Quasisnub tetrahedron]]
| |
| |-
| |
| | [[Quasisnub octahedron]]
| |
| |-
| |
| | [[Small quasidodecicosidodecahedron]]
| |
| |-
| |
| | [[Double octahedron]]
| |
| |-
| |
| | [[Double tetrahemihexahedron]]
| |
| |-
| |
| | [[Small quasirhombidodecahedron]]
| |
| |-
| |
| | [[Stella octangula]]
| |
| | 3| <sup>4</sup>/<sub>2</sub> 3
| |
| |
| |
| | [1.4a]
| |
| | 3.<sup>4</sup>/<sub>2</sub>.3.<sup>4</sup>/<sub>2</sub>.3.<sup>4</sup>/<sub>2</sub>
| |
| | 8
| |
| | 24
| |
| | 8×3<br>6×<sup>4</sup>/<sub>2</sub>
| |
| |-
| |
| | [[Inscribed tetrahedron]]
| |
| | 3| <sup>3</sup>/<sub>2</sub> 3
| |
| |
| |
| | {3, <sup>3</sup>/<sub>2</sub>} + {3, 3}
| |
| | 3.<sup>3</sup>/<sub>2</sub>.3.<sup>3</sup>/<sub>2</sub>.3.<sup>3</sup>/<sub>2</sub>
| |
| | 4
| |
| | 6×2
| |
| | 4×3<br>4×3
| |
| |-
| |
| | [[Inscribed octahedron]]
| |
| | 4| <sup>3</sup>/<sub>2</sub> 4
| |
| |
| |
| | {4, <sup>4</sup>/<sub>2</sub>} + {3, 4}
| |
| | 4.<sup>3</sup>/<sub>2</sub>.4.<sup>3</sup>/<sub>2</sub>.4.<sup>3</sup>/<sub>2</sub>.4.<sup>3</sup>/<sub>2</sub>
| |
| | 6
| |
| | 12×2
| |
| | 6×4<br>8×3
| |
| |-
| |
| | [[Inscribed icosahedron]]
| |
| | 5| <sup>3</sup>/<sub>2</sub> 5
| |
| |
| |
| | {5, <sup>5</sup>/<sub>2</sub>} + {3, 5}
| |
| | 5.<sup>3</sup>/<sub>2</sub>.5.<sup>3</sup>/<sub>2</sub>.5.<sup>3</sup>/<sub>2</sub>.5.<sup>3</sup>/<sub>2</sub>.5.<sup>3</sup>/<sub>2</sub>
| |
| | 12
| |
| | 30×2
| |
| | 12×5<br>20×3
| |
| |-
| |
| | [[Truncated stella octangula]]
| |
| | 3 <sup>4</sup>/<sub>2</sub> |3
| |
| |
| |
| | [1.4b]
| |
| | 3.6.<sup>4</sup>/<sub>2</sub>.6
| |
| | 24
| |
| | 48
| |
| | 8×3<br>8×6<br>6×<sup>4</sup>/<sub>2</sub>
| |
| |-
| |
| | [[Quasiquasitruncated inscribed tetrahedron]]
| |
| |-
| |
| | [[Quasiquasitruncated stella octangula]]
| |
| |-
| |
| | [[Quasiquasitruncated small ditrigonal icosidodecahedron]]
| |
| |-
| |
| | [[Quasiquasitruncated inscribed icosahedron]]
| |
| |-
| |
| | [[Double stella octangula]]
| |
| |-
| |
| | [[Small quasicosicosidodecahedron]]
| |
| |-
| |
| | [[Double tetrahemihexahedron]]
| |
| |-
| |
| | [[Octaoctahedron]]
| |
| |-
| |
| | [[Snub inscribed tetrahedron]]<br>''listed as [[Octahedron]]''
| |
| |-
| |
| | [[Snub stella octangula]]
| |
| |-
| |
| | [[Snub inscribed octahedron]]<br>''listed as [[Cuboctahedron]]''
| |
| |-
| |
| | [[Snub inscribed icosahedron]]<br>''listed as [[Icosidodecahedron]]''
| |
| |-
| |
| | [[Quasisnub stella octangula]]
| |
| |-
| |
| | [[Quasisnub icosicosidodecahedron]]
| |
| |-
| |
| | [[Double tetrahemihexahedron]]
| |
| |-
| |
| | [[Retrosnub stella octangula]]
| |
| |-
| |
| | [[Inscribed octahedron]]
| |
| |-
| |
| | [[Quasiquasisnub inscribed octahedron]]<br>''listed as [[Inscribed octahedron]]''
| |
| |-
| |
| | [[Quasiquasisnub inscribed icosahedron]]<br>''listed as [[Inscribed icosahedron]]''
| |
| |-
| |
| | [[Inscribed small stellated dodecahedron]]
| |
| |-
| |
| | [[Inscribed dodecadodecahedron]]
| |
| |-
| |
| | [[Inscribed icosidodecahedron]]
| |
| |-
| |
| | [[Inscribed great icosidodecahedron]]
| |
| |-
| |
| | [[Double inscribed icosahedron]]<br>''listed as [[Inscribed icosahedron]]'
| |
| |-
| |
| | [[Quasicosidodecadodecahedron]]
| |
| |-
| |
| | [[Inscribed small stellated dodecahedron]]
| |
| |-
| |
| | [[Quasisnub icosidodecadodecahedron]]
| |
| |-
| |
| | [[Great hexahedron]]
| |
| | <sup>4</sup>/<sub>2</sub>| 2 4
| |
| | {4,<sup>4</sup>/<sub>2</sub>}
| |
| | [1.3a]
| |
| | 4.4.4.4
| |
| | 6
| |
| | 12
| |
| | 6×4
| |
| |-
| |
| | [[Stellated hexahedron]]
| |
| | 4| 2 <sup>4</sup>/<sub>2</sub>
| |
| | {<sup>4</sup>/<sub>2</sub>,4}
| |
| | [1.3d]
| |
| | <sup>4</sup>/<sub>2</sub>.<sup>4</sup>/<sub>2</sub>.<sup>4</sup>/<sub>2</sub>.<sup>4</sup>/<sub>2</sub>
| |
| | 6
| |
| | 12
| |
| | 6×<sup>4</sup>/<sub>2</sub>
| |
| | |
| |-
| |
| | [[Truncated great hexahedron]]
| |
| | <sup>4</sup>/<sub>2</sub> 2 |4
| |
| | t{4,<sup>4</sup>/<sub>2</sub>}
| |
| | [1.3b]
| |
| | 8.8.<sup>4</sup>/<sub>2</sub>
| |
| | 24
| |
| | 36
| |
| | 6×8<br>6×<sup>4</sup>/<sub>2</sub>
| |
| |-
| |
| | [[Truncated stellated hexahedron]]
| |
| | 4 2 |<sup>4</sup>/<sub>2</sub>
| |
| | t{<sup>4</sup>/<sub>2</sub>,4}
| |
| | [1.3e]<br>3{4,3}
| |
| | <sup>2</sup>4.<sup>2</sup>4.4
| |
| | 8×3
| |
| | 12×3
| |
| | 6×<sup>2</sup>4<br>6×4
| |
| |-
| |
| | [[Truncated small stellated dodecahedron]]
| |
| | 5 2 |<sup>5</sup>/<sub>2</sub>
| |
| | t{<sup>5</sup>/<sub>2</sub>,5}
| |
| | 3{5,3}
| |
| | <sup>2</sup>5.<sup>2</sup>5.5
| |
| | 20×3
| |
| | 30×3
| |
| | 12×<sup>2</sup>5<br>12×5
| |
| |-
| |
| | [[Truncated great stellated dodecahedron]]
| |
| | 3 2 |<sup>5</sup>/<sub>2</sub>
| |
| | t{<sup>5</sup>/<sub>2</sub>,3}
| |
| | {3,5} + 2{5,<sup>5</sup>/<sub>2</sub>}
| |
| | <sup>2</sup>5.<sup>2</sup>5.3
| |
| | 12×5
| |
| | 30×3
| |
| | 12×<sup>2</sup>5<br>20×3
| |
| |-
| |
| | [[Hexahexahedron]]
| |
| | 2| 4 <sup>4</sup>/<sub>2</sub>
| |
| | <math>\left\{{4\atop4/2}\right\}</math>
| |
| | [1.3f]
| |
| | 4.<sup>4</sup>/<sub>2</sub>.4.<sup>4</sup>/<sub>2</sub>
| |
| | 12
| |
| | 24
| |
| | 6×4<br>6×<sup>4</sup>/<sub>2</sub>
| |
| |-
| |
| | [[Truncated hexahexahedron]]
| |
| | 4 2 <sup>4</sup>/<sub>2</sub>|
| |
| | t<math>\left\{{4\atop4/2}\right\}</math>
| |
| | [1.3g]<br>[2.4m]
| |
| | 8.<sup>2</sup>4.4
| |
| | 24×2
| |
| | 24×2<br>24×1
| |
| | 6×8<br>6×<sup>2</sup>4<br>12×4
| |
| |-
| |
| | [[Truncated dodecadodecahedron]]
| |
| | 5 2 <sup>5</sup>/<sub>2</sub>|
| |
| | t<math>\left\{{5\atop5/2}\right\}</math>
| |
| | [2.4j]
| |
| | 10.<sup>2</sup>5.4
| |
| | 60×2
| |
| | 60×2<br>60×1
| |
| | 12×10<br>12×<sup>2</sup>5<br>30×4
| |
| |-
| |
| | [[Truncated great icosidodecahedron]]
| |
| | 3 2 <sup>5</sup>/<sub>2</sub>|
| |
| | t<math>\left\{{3\atop5/2}\right\}</math>
| |
| | [2.4g]
| |
| | 6.<sup>2</sup>5.4
| |
| | 60×2
| |
| | 60×2<br>60×1
| |
| | 20×6<br>12×<sup>2</sup>5<br>30×4
| |
| |-
| |
| | [[Rhombihexahexahedron]]
| |
| | 4 <sup>4</sup>/<sub>2</sub> |2
| |
| | r<math>\left\{{4\atop4/2}\right\}</math>
| |
| | [1.3i]
| |
| | 4.<sup>4</sup>/<sub>2</sub>.4.4
| |
| | 24
| |
| | 48
| |
| | 6×4<br>6×<sup>4</sup>/<sub>2</sub><br>12×4
| |
| |-
| |
| | [[Great rhombicosidodecahedron]]
| |
| | 3 <sup>5</sup>/<sub>2</sub> |2
| |
| | r<math>\left\{{3\atop5/2}\right\}</math>
| |
| |
| |
| | 4.<sup>5</sup>/<sub>2</sub>.4.3
| |
| | 20×3
| |
| | 60×2
| |
| | 20×3<br>12×<sup>5</sup>/<sub>2</sub><br>30×4
| |
| |-
| |
| | [[Snub hexahexahedron]]
| |
| | |4 2 <sup>4</sup>/<sub>2</sub>
| |
| | s<math>\left\{{4\atop4/2}\right\}</math>
| |
| | [1.3j]
| |
| | 3.<sup>4</sup>/<sub>2</sub>.3.3.4
| |
| | 24
| |
| | 60
| |
| | 6×4<br>6×<sup>4</sup>/<sub>2</sub><br>24×3
| |
| |-
| |
| | [[Quasitruncated great hexahedron]]
| |
| |-
| |
| | [[Quasitruncated great dodecahedron]]
| |
| |-
| |
| | [[Quasitruncated great icosahedron]]
| |
| |-
| |
| | [[Quasitruncated hexahexahedron]]
| |
| |-
| |
| | [[Truncated hexahexahedron]]
| |
| |-
| |
| | [[Pentaquasitruncated dodecadodecahedron]]
| |
| |-
| |
| | [[Triquasitruncated great icosidodecahedron]]
| |
| |-
| |
| | [[Quasiquasitruncated great icosdodecahedron]]
| |
| |-
| |
| | [[Quasiquasitruncated dodecadodecahedron]]
| |
| |-
| |
| | [[Quasirhombidodecadodecahedron]]
| |
| |-
| |
| | [[Small quasisnub icosidodecahedron]]
| |
| |-
| |
| | [[Rhombihexahedron]]
| |
| |-
| |
| | [[Great quasidodecicosidodecahedron]]
| |
| |-
| |
| | [[Great quasirhombidodecahedron]]
| |
| |-
| |
| | [[Quasirhombicosahedron]]
| |
| |-
| |
| | [[Double stellated hexahedron]]
| |
| |-
| |
| | [[Double great dodecahedron]]
| |
| |-
| |
| | [[Double small stellated dodecahedron]]
| |
| |-
| |
| | [[Double hexahexahedron]]
| |
| |-
| |
| | [[Double dodecadodecahedron]]
| |
| |-
| |
| | [[Double truncated stellated hexahedron]]
| |
| |-
| |
| | [[Double truncated great dodecahedron]]
| |
| |-
| |
| | [[Quasiquasitruncated great ditrigonal icosidodecahedron]]
| |
| |-
| |
| | [[Double quasitruncated small stellated dodecahedron]]
| |
| |-
| |
| | [[Quasiquasitruncated inscribed small stellated dodecahedron]]
| |
| |-
| |
| | [[Double Dodecadodecahedron2|Double Dodecadodecahedron 2]]<br>''This differs from the [[double dodecadodecahedron]] in that the pentagrams are two-fold''
| |
| |-
| |
| | [[Great quasicosicosidodecahedron]]
| |
| |-
| |
| | [[Triple stella octangula]]
| |
| |-
| |
| | [[Triple inscribed icosahedron]]
| |
| |-
| |
| | [[Triple small ditrigonal icosidodecahedron]]
| |
| |-
| |
| | [[Great icosidodecahedron]]
| |
| |-
| |
| | [[Great quasisnub icosicosidodecahedron]]
| |
| |-
| |
| | [[Triple great ditrigonal icosidodecahedron]]
| |
| |-
| |
| | [[Great retrosnub icosicosidodecahedron]]
| |
| |-
| |
| | [[Triple inscribed small stellated dodecahedron]]
| |
| |-
| |
| | [[Great retrosnub dodecicosidodecahedron]]
| |
| |}
| |
| | |
| == References ==
| |
| * Taylor, P. ''The Simpler? Polyhedra—being the third part of several comprising The Complete? Polyhedra'' Nattygrafix, 1999
| |
| * Taylor, P. ''The Star & Cross Polyhedra—being the fourth part of several comprising The Complete? Polyhedra'' Nattygrafix, 2000
| |
| | |
| {{expand list|date=August 2012}}
| |
| | |
| [[Category:Polyhedra|Taylor polyhedra]]
| |
| | |
| | |
| {{polyhedron-stub}}
| |