Inverse matrix gamma distribution: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
en>Shorespirit
m added missing symbol, fixed reference format
en>Gadget850
m References: refbegin, replaced: <div class="references-small"><references/></div> → {{reflist}} using AWB
 
Line 1: Line 1:
In [[abstract algebra]], '''Jacobson's conjecture''' is an open problem in [[ring theory]] concerning the intersection of powers of the [[Jacobson radical]] of a [[Noetherian ring]].  
I like Creative writing. <br>I also  try to learn French in my free time.<br><br>Feel free to surf to my webpage :: [http://en.wikipedia.org/wiki/.gw gw timeshare services]
 
It has only been proven for special types of Noetherian rings, so far. Examples exist to show that the conjecture can fail when the ring is not Noetherian on a side, so it is absolutely necessary for the ring to be two-sided Noetherian.
 
The conjecture is named for the algebraist [[Nathan Jacobson]] who posed the first version of the conjecture.
 
==Statement==
For a ring ''R'' with Jacobson radical ''J'', the nonnegative powers ''J''<sup>''n''</sup> are defined by using the [[product of ideals]].
 
:''Jacobson's conjecture:'' In a right-and-left [[Noetherian ring]], <math>\bigcap_{n\in \mathbb{N}}J^n=\{0\}.</math>
 
In other words: "The only element of a Noetherian ring in all powers of ''J'' is 0."
 
The original conjecture posed by Jacobson in 1956<ref>{{citation
| last = Jacobson | first = Nathan
| location = 190 Hope Street, Prov., R. I.
| mr = 0081264
| page = 200
| publisher = American Mathematical Society
| series = American Mathematical Society, Colloquium Publications, vol. 37
| title = Structure of rings
| year = 1956}}. As cited by {{citation
| last1 = Brown | first1 = K. A.
| last2 = Lenagan | first2 = T. H.
| doi = 10.1017/S0017089500004729
| issue = 1
| journal = Glasgow Mathematical Journal
| mr = 641612
| pages = 7–8
| title = A note on Jacobson's conjecture for right Noetherian rings
| volume = 23
| year = 1982}}.</ref> asked about noncommutative one-sided Noetherian rings, however [[Herstein]] produced a counterexample in 1965{{sfn|Herstein|1965}} and soon after Jategaonkar produced a different example which was a left [[principal ideal domain]].{{sfn|Jategaonkar|1968}} From that point on, the conjecture was reformulated to require two-sided Noetherian rings.
 
==Partial results==
Jacobson's conjecture has been verified for particular types of Noetherian rings:
* [[commutative ring|Commutative]] Noetherian rings all satisfy Jacobson's conjecture. This is a consequence of the [[Krull intersection theorem]].
* [[Fully bounded Noetherian ring]]s{{sfn|Cauchon|1974}}{{sfn|Jategaonkar|1974}}
* Noetherian rings with [[Krull dimension]] 1{{sfn|Lenagan|1977}}
* Noetherian rings satisfying the [[second layer condition]]{{sfn|Jategaonkar|1982}}
 
==References==
{{Reflist}}
*{{citation |last=Cauchon|first=Gérard |title=Sur l'intersection des puissances du radical d'un T-anneau noethérien |language=French |journal=C. R. Acad. Sci. Paris Sér. A |volume=279 |year=1974 |pages=91–93 |mr=0347894}}
*{{citation  |last1=Goodearl|first1=K. R.  |last2=Warfield|first2=R. B., Jr.  |title=An introduction to noncommutative Noetherian rings  |series=London Mathematical Society Student Texts  |volume=61  |edition=2  |publisher=Cambridge University Press  |place=Cambridge  |year=2004  |pages=xxiv+344  |isbn=0-521-83687-5  |isbn=0-521-54537-4  |mr=2080008 }}
*{{citation |last=Herstein |first=I. N. |title=A counterexample in Noetherian rings |journal=Proc. Nat. Acad. Sci. U.S.A. |volume=54 |year=1965 |pages=1036–1037 |issn=0027-8424 |mr=0188253}}
*{{citation |last=Jategaonkar |first=Arun Vinayak |title=Left principal ideal domains |journal=J. Algebra |volume=8 |year=1968 |pages=148–155 |issn=0021-8693 |mr=0218387}}
*{{citation|last=Jategaonkar |first=Arun Vinayak |title=Jacobson's conjecture and modules over fully bounded Noetherian rings |journal=J. Algebra |volume=30 |year=1974 |pages=103–121 |issn=0021-8693 |mr=0352170}}
*{{citation |last=Jategaonkar|first=Arun Vinayak |title=Solvable Lie algebras, polycyclic-by-finite groups and bimodule Krull dimension |journal=Comm. Algebra|volume=10 |year=1982  |number=1  |pages=19–69  |issn=0092-7872  |mr=674687  |doi=10.1080/00927878208822700}}
*{{citation  |last=Lenagan|first=T. H. |title=Noetherian rings with Krull dimension one  |journal=J. London Math. Soc. (2)  |volume=15  |year=1977  |number=1  |pages=41–47  |issn=0024-6107 |mr=0442008}}
*{{citation |last=Rowen  |first=Louis H. |title=Ring theory. Vol. I  |series=Pure and Applied Mathematics  |volume=127  |publisher=Academic Press Inc.  |place=Boston, MA |year=1988  |pages=xxiv+538  |isbn=0-12-599841-4  |mr=940245}}
 
[[Category:Conjectures| ]]
[[Category:Ring theory]]

Latest revision as of 12:27, 31 December 2014

I like Creative writing.
I also try to learn French in my free time.

Feel free to surf to my webpage :: gw timeshare services