Elias Bassalygo bound: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
en>Yobot
m References: WP:CHECKWIKI error fixes using AWB (8976)
en>Rjwilmsi
m References: Added 2 dois to journal cites using AWB (10094)
 
Line 1: Line 1:
In [[statistics]], '''local asymptotic normality''' is a property of a sequence of [[statistical model]]s, which allows this sequence to be [[asymptotic distribution|asymptotically approximated]] by a [[normal distribution|normal location model]], after a rescaling of the parameter. An important example when the local asymptotic normality holds is in the case of [[iid]] sampling from a [[regular parametric model]].
My name is Elisha and I am studying Physical and Gender and Women's Studies at Gliwice / Poland.<br><br>Also visit my site: [http://flash.gamescafe.ir/profile/puxsa Info size bike mountain bike sizing.]
 
The notion of local asymptotic normality was introduced by {{harvtxt|Le Cam|1960}}.
 
== Definition ==
{{Technical|reason=notation should be explained - for example, what is θ here?|date=September 2010}}
A sequence of [[parametric statistical model]]s {{nowrap|{&thinsp;''P<sub>n,θ</sub>'': ''θ'' ∈ Θ&thinsp;}}} is said to be '''locally asymptotically normal (LAN)''' at ''θ'' if there exist [[matrix (mathematics)|matrices]] ''r<sub>n</sub>'' and ''I<sub>θ</sub>'' and a random [[Coordinate vector|vector]] {{nowrap|Δ<sub>''n,θ''</sub> ~ ''N''(0, ''I<sub>θ</sub>'')}} such that, for every converging sequence {{math|''h<sub>n</sub>'' → ''h''}},<ref name=V>{{harvtxt|van der Vaart|1998|pp=103–104 }}</ref>
: <math>
    \ln \frac{dP_{\!n,\theta+r_n^{-1}h_n}}{dP_{n,\theta}} = h'\Delta_{n,\theta} - \frac12 h'I_\theta\,h + o_{P_{n,\theta}}(1),
  </math>
where the derivative here is a [[Radon–Nikodym theorem#Radon–Nikodym derivative|Radon–Nikodym derivative]], which is a formalised version of the [[likelihood ratio]], and where ''o'' is a type of [[big O in probability notation]]. In other words, the local likelihood ratio must [[convergence in distribution|converge in distribution]] to a normal random variable whose mean is equal to minus one half the variance:
: <math>
    \ln \frac{dP_{\!n,\theta+r_n^{-1}h_n}}{dP_{n,\theta}}\ \ \xrightarrow{d}\ \ \mathcal{N}\Big( {-\tfrac12} h'I_\theta\,h,\ h'I_\theta\,h\Big).
  </math>
 
The sequences of distributions <math>P_{\!n,\theta+r_n^{-1}h_n}</math> and <math>P_{n,\theta}</math> are [[Contiguity (probability theory)|contiguous]].<ref name=V/>
 
=== Example ===
The most straightforward example of a LAN model is an iid model whose likelihood is twice continuously differentiable. Suppose {{nowrap|{&thinsp;''X''<sub>1</sub>, ''X''<sub>2</sub>, …, ''X<sub>n</sub>''&thinsp;}}} is an iid sample, where each ''X<sub>i</sub>'' has density function {{nowrap|''f''(''x'', ''θ'')}}. The likelihood function of the model is equal to
: <math>
    p_{n,\theta}(x_1,\ldots,x_n;\,\theta) = \prod_{i=1}^n f(x_i,\theta).
  </math>
If ''f'' is twice continuously differentiable in ''θ'', then
: <math>\begin{align}
    \ln p_{n,\theta+\delta\theta}
        &\approx \ln p_{n,\theta} + \delta\theta'\frac{\partial \ln p_{n,\theta}}{\partial\theta} + \frac12 \delta\theta' \frac{\partial^2 \ln p_{n,\theta}}{\partial\theta\,\partial\theta'} \delta\theta \\
        &= \ln p_{n,\theta} + \delta\theta' \sum_{i=1}^n\frac{\partial \ln f(x_i,\theta)}{\partial\theta} + \frac12 \delta\theta' \bigg[\sum_{i=1}^n\frac{\partial^2 \ln f(x_i,\theta)}{\partial\theta\,\partial\theta'} \bigg]\delta\theta .
  \end{align}</math>
 
Plugging in {{nowrap|''δθ'' {{=}} ''h'' / √''n''}}, gives
: <math>
    \ln \frac{p_{n,\theta+h/\sqrt{n}}}{p_{n,\theta}} =
        h' \Bigg(\frac{1}{\sqrt{n}} \sum_{i=1}^n\frac{\partial \ln f(x_i,\theta)}{\partial\theta}\Bigg) \;-\;
        \frac12 h' \Bigg( \frac1n \sum_{i=1}^n - \frac{\partial^2 \ln f(x_i,\theta)}{\partial\theta\,\partial\theta'} \Bigg) h \;+\;
        o_p(1).
  </math>
By the [[central limit theorem]], the first term (in parentheses) converges in distribution to a normal random variable {{nowrap|Δ<sub>''θ''</sub> ~ ''N''(0, ''I<sub>θ</sub>'')}}, whereas by the [[law of large numbers]] the expression in second parentheses converges in probability to ''I<sub>θ</sub>'', which is the [[Fisher information matrix]]:
: <math>
    I_\theta = \mathrm{E}\bigg[{- \frac{\partial^2 \ln f(X_i,\theta)}{\partial\theta\,\partial\theta'}}\bigg] = \mathrm{E}\bigg[\bigg(\frac{\partial \ln f(X_i,\theta)}{\partial\theta}\bigg)\bigg(\frac{\partial \ln f(X_i,\theta)}{\partial\theta}\bigg)'\,\bigg].
  </math>
Thus, the definition of the local asymptotic normality is satisfied, and we have confirmed that the parametric model with iid observations and twice continuously differentiable likelihood has the LAN property.
 
== See also ==
* [[Asymptotic distribution]]
 
=== Notes ===
{{Reflist|3}}
 
== References ==
{{Refbegin}}
* {{Cite book
  | last1 = Ibragimov  | first1 = I.A.
  | last2 = Has’minskiĭ | first2 = R.Z.
  | title = Statistical estimation: asymptotic theory
  | year = 1981
  | publisher = Springer-Verlag
  | isbn = 0-387-90523-5
  | ref = harv
  }}
* {{Cite journal
  | last = Le Cam | first = L.
  | title = Locally asymptotically normal families of distributions
  | year = 1960
  | journal = University of California Publications in Statistics
  | volume = 3
  | pages = 37–98
  | ref = harv
  }}
* {{Cite book
  | last = van der Vaart | first = A.W.
  | title = Asymptotic statistics
  | year = 1998
  | publisher = Cambridge University Press
  | isbn = 978-0-521-78450-4
  | ref = harv
  }}
{{Refend}}
 
{{DEFAULTSORT:Local Asymptotic Normality}}
[[Category:Asymptotic statistical theory]]

Latest revision as of 18:51, 5 May 2014

My name is Elisha and I am studying Physical and Gender and Women's Studies at Gliwice / Poland.

Also visit my site: Info size bike mountain bike sizing.