Superluminescent diode: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
en>Arconsoli
m errata corrige: wide-bandwidth square-low detector -> wide-bandwidth square-law detector
en>IAmGaryAmI
m RCA is now SRI International. Was: Sarnoff Corporation
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
{{Use dmy dates|date=June 2013}}
Not much to say about me I think.<br>Great to be a part of this site.<br>I just wish I'm useful at all<br><br>Check out my web site - [http://suitswholesale.net.adderrobot.com/suitswholesale.net Designer Suits Supplier]
In [[mathematics]], a certain [[rational expression]] in one [[Variable (mathematics)|variable]]  for the [[computation]] of the [[approximation|approximate value]]s of the [[sine|trigonometric sine]]s discovered by [[Bhaskara I]] (c. 600 – c. 680), a seventh-century Indian [[mathematician]],  is known as '''Bhaskara I's sine approximation formula'''.<ref name="mcs">{{Cite web|url=http://www-history.mcs.st-and.ac.uk/Biographies/Bhaskara_I.html|title=Bhaskara I|last=J J O'Connor and E F Robertson|date = November 2000|publisher=School of Mathematics and Statistics University of St Andrews, Scotland |accessdate=22 April 2010| archiveurl= http://web.archive.org/web/20100323052236/http://www-history.mcs.st-and.ac.uk/Biographies/Bhaskara_I.html| archivedate= 23 March 2010 <!--DASHBot-->| deadurl= no}}</ref>
This [[formula]] is given in his treatise titled ''Mahabhaskariya''. It is not known how Bhaskara I arrived at his approximation formula. However, several [[historian]]s of [[mathematics]] have put forward different theories as to the method Bhaskara might have used to arrive at his formula. The formula is elegant and simple and enables one to compute reasonably accurate values of trigonometric sines without using any geometry whatsoever.<ref name="Brummelen"/>
 
==The approximation formula==
The formula is given in verses 17 &ndash; 19, Chapter VII, Mahabhaskariya of Bhaskara I. A translation of the verses is given below:<ref name="Gupta">{{Cite journal|last=R.C. Gupta|year=1967|title=Bhaskara I' approximation to sine|journal=Indian Journal of HIstory of Science|volume=2|issue=2|url=http://www.new.dli.ernet.in/rawdataupload/upload/insa/INSA_1/20005af0_121.pdf|accessdate=20 April 2010}}</ref>
 
*(Now) I briefly state the rule (for finding the ''bhujaphala'' and the ''kotiphala'', etc.) without making use of the Rsine-differences 225, etc. Subtract the degrees of a ''bhuja'' (or ''koti'') from the degrees of a half circle (that is, 180 degrees). Then multiply the remainder by the degrees of the ''bhuja'' or ''koti'' and put down the result at two places. At one place subtract the result from 40500. By one-fourth of the remainder (thus obtained),  divide the result at the other place as multiplied by the '''anthyaphala'' (that is, the epicyclic radius). Thus is obtained the entire ''bahuphala'' (or, ''kotiphala'') for the sun, moon or the star-planets. So also are obtained the direct and inverse Rsines.
 
(The reference "Rsine-differences 225" is an allusion to [[Aryabhata's sine table]].)
 
In modern mathematical notations, for an angle ''x'' in degrees, this formula gives<ref name="Gupta"/>
 
:<math> \sin x^\circ = \frac{4 x (180-x)}{40500 - x(180-x)}</math>
 
===Equivalent forms of the formula===
Bhaskara I's sine approximation formula can be expressed using the [[radian]] measure of [[angle]]s as follows.<ref name="mcs"/>
 
:<math>\sin x = \frac{16x (\pi - x)}{5\pi^2 - 4x (\pi - x)}</math>
 
For a positive integer ''n'' this takes the following form:<ref name="Joseph">{{Cite book|last=George Gheverghese Joseph|title=[[A Passage to Infinity|A passage to infinity : Medieval Indian mathematics from Kerala and its impact]]|publisher=SAGE Publications India Pvt. Ltd.|location=New Delhi|year=2009|isbn=978-81-321-0168-0}} (p.60)</ref>
 
:<math> \sin \frac{\pi}{n} =  \frac{16(n-1)}{5n^2-4n+4}.</math>
 
Equivalent forms of Bhaskara I's formula have been given by almost all subsequent astronomers and mathematicians of India. For example, [[Brahmagupta]]'s (598 &ndash; 668 [[BCE|CE]])
''Brhma-Sphuta-Siddhanta'' (verses 23 &ndash; 24, Chapter XIV)<ref name="Gupta"/> gives the formula in the following form:
 
:<math> R \sin x^\circ = \frac{R x(180-x)}{10125 - \frac{1}{4}x(180-x)}</math>
 
Also, [[Bhaskara II]]  (1114 &ndash; 1185 [[BCE|CE]]) has given this formula in his [[Lilavati]] (Kshetra-vyavahara, Soka No.48) in the following form:
 
:<math> 2R\sin x^\circ = \frac{4\times 2R \times 2Rx\times (360R - 2Rx)}{\frac{1}{4}\times 5 \times (360R)^2 - 2Rx\times (360R -2Rx)}</math>
 
==Accuracy of the formula==
[[File:BhaskaraSineApproximation3.jpeg|thumb|right|350px|Figure illustrates the level of accuracy of the Bhaskara I's sine approximation formula. The shifted curves 4 ''x'' ( 180 - ''x'' ) / ( 40500 - ''x'' ( 180 - ''x'' ) - 0.2 and sin ( ''x'' ) + 0.2 look like exact copies of the curve sin ( ''x'' ).]]
 
The formula is applicable for values of ''x''° in the range from 0 to 180. The formula is remarkably accurate in this range. The graphs of sin ( ''x'' ) and the approximation formula are indistinguishable and are nearly identical. One of the accompanying figures gives the graph of the error function, namely the function,
:<math> \sin x^\circ - \frac{4 x (180-x)}{40500 - x(180-x)}</math>
in using the formula. It shows that the maximum absolute error in using the formula is around 0.0016. From a plot of the percentage value of the absolute error, it is clear  that the maximum percentage error is less than 1.8. The approximation formula thus gives sufficiently accurate values of sines for all practical purposes. However it was not sufficient for the more accurate computational requirements of astronomy. The search for more accurate formulas by Indian astronomers eventually led to the discovery the [[Madhava series|power series]] expansions of sin ''x'' and cos ''x'' by [[Madhava of Sangamagrama]] (c. 1350 – c. 1425), the founder of the [[Kerala school of astronomy and mathematics]].
 
[[File:BhaskaraSineApproximation.JPG|thumb|right|350px|Graph of the error in Bhaskara I's sine approximation formula]]
 
[[File:BhaskaraSineApproximation1.png|thumb|right|350px|Graph of the percentage error in Bhaskara I's sine approximation formula]]
 
==Derivation of the formula==
Bhaskara I had not indicated any method by which he arrived at his formula. Historians have speculated on various possibilities. No definitive answers have as yet been obtained. Beyond its historical importance of being a prime example of the mathematical achievements of ancient Indian astronomers, the formula is of significance from a modern perspective also. Mathematicians have attempted to derive the rule using modern concepts and tools.  Around half a dozen methods have been suggested, each based on a separate set of premises.<ref name="Brummelen">{{Cite book|last=Glen Van Brummelen|title=The mathematics of the heavens and the earth: the early history of trigonometry|publisher=Princeton University Press|year=2009|isbn=978-0-691-12973-0}} (p.104)</ref><ref name="Gupta"/> Most of these derivations use only elementary concepts.
 
===Derivation based on elementary geometry <ref name="Brummelen"/><ref name="Gupta"/>===
Let the [[circumference]] of a [[circle]] be measured in [[Degree (angle)|degree]]s and let the [[radius]] ''R'' of the [[circle]] be also measured in [[Degree (angle)|degree]]s. Choosing a fixed diameter ''AB'' and an arbitrary point ''P'' on the circle and dropping the perpendicular ''PM'' to ''AB'', we can compute the area of the triangle ''APB'' in two ways. Equating the two expressions for the area one gets (1/2) ''AB'' &times; ''PM'' = (1/2) ''AP'' &times; ''BP''. This gives
:<math> \frac{1}{PM} = \frac{AB}{AP \times BP}</math>.
Letting ''x'' be the length of the arc ''AP'',  the length of the arc ''BP'' is 180 - ''x''. These arcs are much bigger than the respective chords. Hence one gets
:<math>\frac{1}{PM} < \frac{2R}{x(180-x)}</math>.
One now seeks two constants α and β such that
:<math> \frac{1}{PM} = \alpha \frac{2R}{x(180-x)} + \beta</math>
It is indeed not possible to obtain such constants. However one may choose values for α and β so that the above expression is valid for two chosen values of the arc length ''x''. Choosing 30° and 90° as these values and solving the resulting equations, one immediately gets Bhaskara I's sine approximation formula.
 
===Derivation starting with a general rational expression===
Assuming that ''x'' is in radians, one may seek an approximation to sin (''x'') in the following form;
:<math> \sin x = \frac{a+bx+cx^2}{p+qx+rx^2}</math>
The constants ''a'', ''b'', ''c'', ''p'', ''q''  and ''r'' (only five of them are independent) can be determined by assuming that the formula must be exactly valid when ''x'' = 0, π/6, π/2, π,  and further assuming that it has to satisfy the property that sin (''x'') = sin (π - ''x'').<ref name="Brummelen"/><ref name="Gupta"/> This procedure produces the formula expressed using [[radian]] measure of angles.
 
===An elementary argument<ref name="Joseph"/>===
[[File:BhaskaraSineApproximation4.jpeg|thumb|right|350px|Comparison of graphs of the parabolas<br> ''x''(180 &minus; ''x'')/8100 and ''x''(180 &minus; ''x'')/9000 <br> with the graph of sin(''x'') (''x'' in degrees).]]
The part of the graph of sin(''x'') in the range from 0° to 180° "looks like" part of a parabola through the points (0,&nbsp;0) and (180,&nbsp;0). The general such parabola is
 
:<math>k x ( 180 - x ).\,</math>
 
The parabola that also passes through (90,&nbsp;1) (which is the point corresponding to the value sin(90°)&nbsp;=&nbsp;1) is
 
:<math>\frac{x ( 180 - x )}{ 90 \times 90} = \frac{x ( 180 - x )}{ 8100}.</math>
 
The parabola which also passes through (30,&nbsp;1/2) (which is the point corresponding to the value sin(30°)&nbsp;=&nbsp;1/2) is
 
:<math>\frac{x ( 180 - x )}{2 \times  30 \times 150} = \frac{x(180-x)}{9000}.</math>
 
These expressions suggest a varying denominator which takes the value 90&nbsp;&times;&nbsp;90 when ''x''&nbsp;=&nbsp;90 and the value 2&nbsp;&times;&nbsp;30&nbsp;&times;&nbsp;150 when ''x''&nbsp;=&nbsp;30. That this expression should also be symmetrical about the line ' ''x''&nbsp;=&nbsp;90' rules out the possibility of choosing a linear expression in&nbsp;''x''. Computations involving ''x''(180&nbsp;&minus;&nbsp;''x'') might immediately suggest that the expression could be of the form
 
:<math>8100a + bx ( 180 - x ).\,</math>
 
A little experimentation (or by setting up and solving two linear equations in ''a'' and ''b'') will yield the values ''a''&nbsp;=&nbsp;5/4, ''b''&nbsp;=&nbsp;&minus;1/4. These give Bhaskara I's sine approximation formula.
 
==See also==
*[[Aryabhata's sine table]]
*[[Madhava's sine table]]
 
==References==
{{Reflist}}
 
==Further references==
# R.C..Gupta, On derivation of Bhaskara I's formula for the sine, Ganita Bharati 8 (1-4) (1986), 39-41.
# T. Hayashi, A note on Bhaskara I's rational approximation to sine, Historia Sci. No. 42 (1991), 45-48.
 
{{DEFAULTSORT:Bhaskara I's Sine Approximation Formula}}
[[Category:Trigonometry]]
[[Category:Indian mathematics]]
[[Category:History of mathematics]]
[[Category:History of geometry]]

Latest revision as of 21:11, 10 January 2015

Not much to say about me I think.
Great to be a part of this site.
I just wish I'm useful at all

Check out my web site - Designer Suits Supplier